1,675
Views
0
CrossRef citations to date
0
Altmetric
Immunotherapeutics – Mini-Review

Nanovaccines: Merits, and diverse roles in boosting antitumor immune responses

ORCID Icon, , &
Article: 2119020 | Received 18 May 2022, Accepted 25 Aug 2022, Published online: 28 Sep 2022

References

  • Yousefi H, Yuan J, Keshavarz-Fathi M, Murphy JF, Rezaei N. Immunotherapy of cancers comes of age[J]. Expert Rev Clin Immunol. 2017;13(10):1–10. doi:10.1080/1744666X.2017.1366315.
  • Platten M, Bunse L, Wick A, Bunse T, Le Cornet L, Harting I, Sahm F, Sanghvi K, Tan CL, Poschke I. A vaccine targeting mutant IDH1 in newly diagnosed glioma[J]. Nature. 2021;592(7854):463–468. doi:10.1038/s41586-021-03363-z.
  • Bowen WS, Svrivastava AK, Batra L, Barsoumian H, Shirwan H. Current challenges for cancer vaccine adjuvant development[J]. Expert Rev Vaccines. 2018;17(3):207–215. doi:10.1080/14760584.2018.1434000.
  • Saxena M, Van Der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines[J]. Nat Rev Cancer. 2021;21(6):360–378. doi:10.1038/s41568-021-00346-0.
  • Vermaelen K. Vaccine strategies to improve anti-cancer cellular immune responses[J]. Front Immunol. 2019;10:8. doi:10.3389/fimmu.2019.00008.
  • Qin L, Zhang H, Zhou Y, Umeshappa CS, Gao H. Nanovaccine‐based strategies to overcome challenges in the whole vaccination cascade for tumor immunotherapy[J]. Small. 2021;17(28):2006000. doi:10.1002/smll.202006000.
  • Das A, Ali N. Nanovaccine: an emerging strategy[J]. Expert Rev Vaccines. 2021;20(10):1273–1290. doi:10.1080/14760584.2021.1984890.
  • Wen R, Umeano AC, Kou Y, Xu J, Farooqi AA. Nanoparticle systems for cancer vaccine[J]. Nanomedicine (Lond). 2019;14(5):627–648. doi:10.2217/nnm-2018-0147.
  • Koirala P, Bashiri S, Toth I, Skwarczynski M. Current prospects in peptide-based subunit nanovaccines[J]. Methods Mol Biol. 2022;2412:309–338.
  • Lu L, Duong VT, Shalash AO, Skwarczynski M, Toth I. Chemical conjugation strategies for the development of protein-based subunit nanovaccines[J]. Vaccines (Basel). 2021;9(6):563–588.
  • He X, Zhou S, Quinn B, Jahagirdar D, Ortega J, Abrams SI, Lovell JF. HPV-associated tumor eradication by vaccination with synthetic short peptides and particle-forming liposomes[J]. Small. 2021;17(11):e2007165. doi:10.1002/smll.202007165.
  • Cordeiro AS, Patil-Sen Y, Shivkumar M, Patel R, Khedr A, Elsawy MA. Nanovaccine delivery approaches and advanced delivery systems for the prevention of viral infections: from development to clinical application[J]. Pharmaceutics. 2021;13(12):2091. doi:10.3390/pharmaceutics13122091.
  • Yin WM, Li YW, Gu YQ, Luo M. Nanoengineered targeting strategy for cancer immunotherapy[J]. Acta Pharmacol Sin. 2020;41(7):902–910. doi:10.1038/s41401-020-0417-3.
  • Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns[J]. Nat Rev Immunol. 2010;10(11):787–796. doi:10.1038/nri2868.
  • Zhao L, Seth A, Wibowo N, Zhao C-X, Mitter N, Yu C, Middelberg APJ. Nanoparticle vaccines[J]. Vaccine. 2014;32(3):327–337. doi:10.1016/j.vaccine.2013.11.069.
  • El-Sayed N, Korotchenko E, Scheiblhofer S, Weiss R, Schneider M. Functionalized multifunctional nanovaccine for targeting dendritic cells and modulation of immune response[J]. Int J Pharm. 2021;593:120123. doi:10.1016/j.ijpharm.2020.120123.
  • Wen R, Banik B, Pathak RK, Kumar A, Kolishetti N, Dhar S. Nanotechnology inspired tools for mitochondrial dysfunction related diseases[J]. Adv Drug Deliv Rev. 2016;99(Pt A):52–69. doi:10.1016/j.addr.2015.12.024.
  • Hu X, Wu T, Bao Y, Zhang Z. Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense[J]. J Control Release. 2017;256:26–45. doi:10.1016/j.jconrel.2017.04.026.
  • Kim CG, Kye YC, Yun CH. The role of nanovaccine in cross-presentation of antigen-presenting cells for the activation of CD8(+) T cell responses[J]. Pharmaceutics. 2019;11(11):612. doi:10.3390/pharmaceutics11110612.
  • Du G, Sun X. Engineering nanoparticulate vaccines for enhancing antigen cross-presentation[J]. Curr Opin Biotechnol. 2020;66:113–122. doi:10.1016/j.copbio.2020.06.015.
  • Cai T, Liu H, Zhang S, Hu J, Zhang L. Delivery of nanovaccine towards lymphoid organs: recent strategies in enhancing cancer immunotherapy[J]. J Nanobiotechnology. 2021;19(1):389. doi:10.1186/s12951-021-01146-2.
  • Zhang L-X, Sun X-M, Jia Y-B, Liu X-G, Dong M, Xu ZP, Liu R-T. Nanovaccine’s rapid induction of anti-tumor immunity significantly improves malignant cancer immunotherapy. Nano Today. 2020;35:100923. doi:10.1016/j.nantod.2020.100923.
  • Chen W, Zuo H, Li B, Duan C, Rolfe B, Zhang B, Mahony TJ, Xu ZP. Clay nanoparticles elicit long-term immune responses by forming biodegradable depots for sustained antigen stimulation[J]. Small. 2018;14(19):e1704465. doi:10.1002/smll.201704465.
  • Bhardwaj P, Bhatia E, Sharma S, Ahamad N, Banerjee R. Advancements in prophylactic and therapeutic nanovaccines[J]. Acta Biomater. 2020;108:1–21. doi:10.1016/j.actbio.2020.03.020.
  • Gheibi Hayat SM, Darroudi M. Nanovaccine: a novel approach in immunization[J]. J Cell Physiol. 2019;234(8):12530–12536. doi:10.1002/jcp.28120.
  • Carmona-Ribeiro AM, Perez-Betancourt Y. Cationic nanostructures for vaccines design[J]. Biomimetics (Basel). 2020;5(3). doi:10.3390/biomimetics5030032.
  • Mao L, Chen Z, Wang Y, Chen C. Design and application of nanoparticles as vaccine adjuvants against human corona virus infection[J]. J Inorg Biochem. 2021;219:111454. doi:10.1016/j.jinorgbio.2021.111454.
  • Kijanka G, Bee JS, Korman SA, Wu Y, Roskos LK, Schenerman MA, Slütter B, Jiskoot W. Submicron size particles of a murine monoclonal antibody are more immunogenic than soluble oligomers or micron size particles upon subcutaneous administration in mice[J]. J Pharm Sci. 2018;107(11):2847–2859. doi:10.1016/j.xphs.2018.06.029.
  • Wang X, Li X, Ito A, Sogo Y, Ohno T. Particle-Size-Dependent toxicity and immunogenic activity of mesoporous silica-based adjuvants for tumor immunotherapy[J]. Acta Biomater. 2013;9(7):7480–7489. doi:10.1016/j.actbio.2013.03.031.
  • Moyer TJ, Zmolek AC, Irvine DJ. Beyond antigens and adjuvants: formulating future vaccines[J]. J Clin Invest. 2016;126(3):799–808. doi:10.1172/JCI81083.
  • Palombo M, Deshmukh M, Myers D, Gao J, Szekely Z, Sinko PJ. Pharmaceutical and toxicological properties of engineered nanomaterials for drug delivery[J]. Annu Rev Pharmacol Toxicol. 2014;54(1):581–598. doi:10.1146/annurev-pharmtox-010611-134615.
  • Benne N, Van Duijn J, Kuiper J, Jiskoot W, Slütter B. Orchestrating immune responses: how size, shape and rigidity affect the immunogenicity of particulate vaccines[J]. J Control Release. 2016;234:124–134. doi:10.1016/j.jconrel.2016.05.033.
  • Reddy ST, Van Der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O’Neil CP, Lee LK, Swartz MA, Hubbell JA. Exploiting lymphatic transport and complement activation in nanoparticle vaccines[J]. Nat Biotechnol. 2007;25(10):1159–1164. doi:10.1038/nbt1332.
  • D’Amico C, Fontana F, Cheng R, Santos HA. Development of vaccine formulations: past, present, and future[J]. Drug Deliv Transl Res. 2021;11(2):353–372. doi:10.1007/s13346-021-00924-7.
  • Carmona-Ribeiro AM. Supramolecular nanostructures for vaccines[J]. Biomimetics (Basel). 2021;7(1). doi:10.3390/biomimetics7010006.
  • Niikura K, Matsunaga T, Suzuki T, Kobayashi S, Yamaguchi H, Orba Y, Kawaguchi A, Hasegawa H, Kajino K, Ninomiya T, et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo[J]. ACS Nano. 2013;7(5):3926–3938. doi:10.1021/nn3057005.
  • Li Y, Kroger M, Liu WK. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk[J]. Nanoscale. 2015;7(40):16631–16646. doi:10.1039/C5NR02970H.
  • Florez L, Herrmann C, Cramer JM, Hauser CP, Koynov K, Landfester K, Crespy D, Mailander V. How shape influences uptake: interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells[J]. Small. 2012;8(14):2222–2230. doi:10.1002/smll.201102002.
  • Huang X, Li L, Liu T, Hao N, Liu H, Chen D, Tang F. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo[J]. ACS Nano. 2011;5(7):5390–5399. doi:10.1021/nn200365a.
  • Heuts J, Jiskoot W, Ossendorp F, van der Maaden K. Cationic nanoparticle-based cancer vaccines[J]. Pharmaceutics. 2021;13(5):596. doi:10.3390/pharmaceutics13050596.
  • Carmona-Ribeiro AM. Biomimetic nanoparticles: preparation, characterization and biomedical applications[J]. Int J Nanomedicine. 2010;5:249–259. doi:10.2147/IJN.S9035.
  • Ahmad MZ, Ahmad J, Alasmary MY, Abdel-Wahab BA, Warsi MH, Haque A, Chaubey P. Emerging advances in cationic liposomal cancer nanovaccines: opportunities and challenges[J]. Immunotherapy. 2021;13(6):491–507. doi:10.2217/imt-2020-0258.
  • Zamani P, Momtazi-Borojeni AA, Nik ME, Oskuee RK, Sahebkar A. Nanoliposomes as the adjuvant delivery systems in cancer immunotherapy[J]. J Cell Physiol. 2018;233(7):5189–5199. doi:10.1002/jcp.26361.
  • Foged C, Arigita C, Sundblad A, Jiskoot W, Storm G, Frokjaer S. Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition[J]. Vaccine. 2004;22(15–16):1903–1913. doi:10.1016/j.vaccine.2003.11.008.
  • Le MQ, Carpentier R, Lantier I, Ducournau C, Fasquelle F, Dimier-Poisson I, Betbeder D. Protein delivery by porous cationic maltodextrin-based nanoparticles into nasal mucosal cells: comparison with cationic or anionic nanoparticles[J]. Int J Pharm X. 2019;1:100001. doi:10.1016/j.ijpx.2018.100001.
  • Kamphorst AO, Guermonprez P, Dudziak D, Nussenzweig MC. Route of antigen uptake differentially impacts presentation by dendritic cells and activated monocytes[J]. J Immunol. 2010;185(6):3426–3435. doi:10.4049/jimmunol.1001205.
  • Dong X, Liang J, Yang A, Qian Z, Kong D, Lv F. A visible codelivery nanovaccine of antigen and adjuvant with self-carrier for cancer immunotherapy[J]. ACS Appl Mater Interfaces. 2019;11(5):4876–4888. doi:10.1021/acsami.8b20364.
  • Nagy NA, De Haas AM, Geijtenbeek TBH, van Ree R, Tas SW, van Kooyk Y, de Jong EC. Therapeutic liposomal vaccines for dendritic cell activation or tolerance[J]. Front Immunol. 2021;12:674048. doi:10.3389/fimmu.2021.674048.
  • Lee YS, Radford KJ. The role of dendritic cells in cancer[J]. Int Rev Cell Mol Biol. 2019;348:123–178.
  • Wang Y, Xiang Y, Xin VW, Wang X-W, Peng X-C, Liu X-Q, Wang D, Li N, Cheng J-T, Lyv Y-N, et al. Dendritic cell biology and its role in tumor immunotherapy[J]. J Hematol Oncol. 2020;13(1):107. doi:10.1186/s13045-020-00939-6.
  • Qin M, Li M, Song G, Yang C, Wu P, Dai W, Zhang H, Wang X, Wang Y, Zhou D, et al. Boosting innate and adaptive antitumor immunity via a biocompatible and carrier-free nanovaccine engineered by the bisphosphonates-metal coordination[J]. Nano Today. 2021:37(15):158–170.
  • Reddy ST, Swartz MA, Hubbell JA. Targeting dendritic cells with biomaterials: developing the next generation of vaccines[J]. Trends Immunol. 2006;27(12):573–579. doi:10.1016/j.it.2006.10.005.
  • Warrier VU, Makandar AI, Garg M, Sethi G, Kant R, Pal JK, Yuba E, Gupta RK. Engineering anti-cancer nanovaccine based on antigen cross-presentation[J]. Biosci Rep. 2019;39(10). doi:10.1042/BSR20193220.
  • Rosalia RA, Cruz LJ, Van Duikeren S, Tromp AT, Silva AL, Jiskoot W, De Gruijl T, Lowik C, Oostendorp J, Van Der Burg SH, et al. CD40-Targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses[J]. Biomaterials. 2015;40:88–97. doi:10.1016/j.biomaterials.2014.10.053.
  • Luo Z, Wang C, Yi H, Li P, Pan H, Liu L, Cai L, Ma Y. Nanovaccine loaded with poly I:c and STAT3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells in vivo[J]. Biomaterials. 2015;38:50–60. doi:10.1016/j.biomaterials.2014.10.050.
  • Trombetta ES, Mellman I. Cell biology of antigen processing in vitro and in vivo[J]. Annu Rev Immunol. 2005;23(1):975–1028. doi:10.1146/annurev.immunol.22.012703.104538.
  • Collin M, Bigley V. Human dendritic cell subsets: an update[J]. Immunology. 2018;154(1):3–20. doi:10.1111/imm.12888.
  • Pearce EJ, Everts B. Dendritic cell metabolism[J]. Nat Rev Immunol. 2015;15(1):18–29. doi:10.1038/nri3771.
  • Vander Lugt B, Khan AA, Hackney JA, Agrawal S, Lesch J, Zhou M, Lee WP, Park S, Xu M, DeVoss J, et al. Transcriptional programming of dendritic cells for enhanced MHC class II antigen presentation[J]. Nat Immunol. 2014;15(2):161–167. doi:10.1038/ni.2795.
  • Platt CD, Ma JK, Chalouni C, Ebersold M, Bou-Reslan H, Carano RAD, Mellman I, Delamarre L. Mature dendritic cells use endocytic receptors to capture and present antigens[J]. Proc Natl Acad Sci U S A. 2010;107(9):4287–4292. doi:10.1073/pnas.0910609107.
  • Zhang L, Huang J, Chen X, Pan C, He Y, Su R, Guo D, Yin S, Wang S, Zhou L, et al. Self-Assembly nanovaccine containing TLR7/8 agonist and STAT3 inhibitor enhances tumor immunotherapy by augmenting tumor-specific immune response[J]. J Immunother Cancer. 2021;9(8):e003132. doi:10.1136/jitc-2021-003132.
  • Liu D, Liu J, Ma B, Deng B, Leng X, Kong D, Liu L. A simple self-adjuvanting biomimetic nanovaccine self-assembled with the conjugate of phospholipids and nucleotides can induce a strong cancer immunotherapeutic effect[J]. Biomater Sci. 2021;9(1):84–92. doi:10.1039/D0BM01333A.
  • Ma L, Diao L, Peng Z, Jia Y, Xie H, Li B, Ma J, Zhang M, Cheng L, Ding D, et al. Immunotherapy and prevention of cancer by nanovaccines loaded with whole-cell components of tumor tissues or cells[J]. Adv Mater. 2021;33(43):e2104849. doi:10.1002/adma.202104849.
  • Silva JM, Zupancic E, Vandermeulen G, Oliveira VG, Salgado A, Videira M, Gaspar M, Graca L, Préat V, Florindo HF. In vivo delivery of peptides and toll-like receptor ligands by mannose-functionalized polymeric nanoparticles induces prophylactic and therapeutic anti-tumor immune responses in a melanoma model[J]. J Control Release. 2015;198:91–103. doi:10.1016/j.jconrel.2014.11.033.
  • Wui SR, Ko A, Ryu JI, Sim E, Lim SJ, Park SA, Kim KS, Kim H, Youn H, Lee NG. The effect of a TLR4 agonist/cationic liposome adjuvant on varicella-zoster virus glycoprotein E vaccine efficacy: antigen presentation, uptake, and delivery to lymph nodes[J]. Pharmaceutics. 2021;13(3):390. doi:10.3390/pharmaceutics13030390.
  • Das A, Asad M, Sabur A, Didwania N, Ali N. Monophosphoryl lipid a based cationic liposome facilitates vaccine induced expansion of polyfunctional T cell immune responses against visceral leishmaniasis[J]. ACS Appl Bio Mater. 2018;1(4):999–1018.
  • Tang Y, Fan W, Chen G, Zhang M, Tang X, Wang H, Zhao P, Xu Q, Wu Z, Lin X, et al. Recombinant cancer nanovaccine for targeting tumor-associated macrophage and remodeling tumor microenvironment[J]. Nano Today. 2021:40(18):159–163.
  • Yan P, Luo Y, Li X, Li Y, Wang Y, Wu J, Zhou S. A redox-responsive nanovaccine combined with A2A receptor antagonist for cancer immunotherapy[J]. Adv Healthc Mater. 2021;10(21):e2101222. doi:10.1002/adhm.202101222.
  • Zhang W, Wang L, Liu Y, Chen X, Liu Q, Jia J, Yang T, Qiu S, Ma G. Immune responses to vaccines involving a combined antigen–nanoparticle mixture and nanoparticle-encapsulated antigen formulation[J]. Biomaterials. 2014;35(23):6086–6097. doi:10.1016/j.biomaterials.2014.04.022.
  • Wang C, Liu P, Zhuang Y, Li P, Jiang B, Pan H, Liu L, Cai L, Ma Y. Lymphatic-Targeted cationic liposomes: a robust vaccine adjuvant for promoting long-term immunological memory[J]. Vaccine. 2014;32(42):5475–5483. doi:10.1016/j.vaccine.2014.07.081.
  • Manspeaker MP, Thomas SN. Lymphatic immunomodulation using engineered drug delivery systems for cancer immunotherapy[J]. Adv Drug Deliv Rev. 2020;160:19–35. doi:10.1016/j.addr.2020.10.004.
  • Zhao X, Liu X, Zhang P, Liu Y, Ran W, Cai Y, Wang J, Zhai Y, Wang G, Ding Y, et al. Injectable peptide hydrogel as intraperitoneal triptolide depot for the treatment of orthotopic hepatocellular carcinoma[J]. Acta Pharm Sin B. 2019;9(5):1050–1060. doi:10.1016/j.apsb.2019.06.001.
  • Hansen S, Lehr CM. Nanoparticles for transcutaneous vaccination[J]. Microb Biotechnol. 2012;5(2):156–167. doi:10.1111/j.1751-7915.2011.00284.x.
  • Wang J, Hu X, Xiang D. Nanoparticle drug delivery systems: an excellent carrier for tumor peptide vaccines[J]. Drug Deliv. 2018;25(1):1319–1327. doi:10.1080/10717544.2018.1477857.
  • Zhang L, Wu S, Qin Y, Fan F, Zhang Z, Huang C, Ji W, Lu L, Wang C, Sun H, et al. Targeted codelivery of an antigen and dual agonists by hybrid nanoparticles for enhanced cancer immunotherapy[J]. Nano Lett. 2019;19(7):4237–4249. doi:10.1021/acs.nanolett.9b00030.
  • Zaman M, Good MF, Toth I. Nanovaccines and their mode of action[J]. Methods. 2013;60(3):226–231. doi:10.1016/j.ymeth.2013.04.014.
  • Guo Y, Wang D, Song Q, Wu T, Zhuang X, Bao Y, Kong M, Qi Y, Tan S, Zhang Z. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma[J]. ACS Nano. 2015;9(7):6918–6933. doi:10.1021/acsnano.5b01042.
  • Venceslau-Carvalho AA, Teixeira De Pinho Favaro M, Ramos Pereira L, Rodrigues-Jesus MJ, Santos Pereira S, Andreata-Santos R, dos Santos Alves RP, Castro-Amarante MF, Bitencourt Rodrigues K, Ramos da Silva J, et al. Nano-Multilamellar lipid vesicles loaded with a recombinant form of the chikungunya virus E2 protein improve the induction of virus-neutralizing antibodies[J]. Nanomedicine. 2021;37:102445. doi:10.1016/j.nano.2021.102445.
  • Zhu D, Hu C, Fan F, Qin Y, Huang C, Zhang Z, Lu L, Wang H, Sun H, Leng X, et al. Co-delivery of antigen and dual agonists by programmed mannose-targeted cationic lipid-hybrid polymersomes for enhanced vaccination[J]. Biomaterials. 2019;206:25–40. doi:10.1016/j.biomaterials.2019.03.012.
  • Pan C, Wu J, Qing S, Zhang X, Zhang L, Yue H, Zeng M, Wang B, Yuan Z, Qiu Y, et al. Biosynthesis of self-assembled proteinaceous nanoparticles for vaccination[J]. Adv Mater. 2020;32(42):e2002940. doi:10.1002/adma.202002940.
  • Henriksen-Lacey M, Bramwell VW, Christensen D, Agger E-M, Andersen P, Perrie Y. Liposomes based on dimethyldioctadecylammonium promote a depot effect and enhance immunogenicity of soluble antigen[J]. J Control Release. 2010;142(2):180–186. doi:10.1016/j.jconrel.2009.10.022.
  • Qu Y, Wang L, Yin S, Zhang B, Jiao Y, Sun Y, Middelberg A, Bi J. Stability of engineered ferritin nanovaccines investigated by combined molecular simulation and experiments[J]. J Phys Chem B. 2021;125(15):3830–3842. doi:10.1021/acs.jpcb.1c00276.
  • Bai S, Jiang H, Song Y, Zhu Y, Qin M, He C, Du G, Sun X. Aluminum nanoparticles deliver a dual-epitope peptide for enhanced anti-tumor immunotherapy[J]. J Control Release. 2022;344:134–146. doi:10.1016/j.jconrel.2022.02.027.
  • Li AW, Sobral MC, Badrinath S, Choi Y, Graveline A, Stafford AG, Weaver JC, Dellacherie MO, Shih T-Y, Ali OA, et al. A facile approach to enhance antigen response for personalized cancer vaccination[J]. Nat Mater. 2018;17(6):528–534. doi:10.1038/s41563-018-0028-2.
  • Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y, Yu H, Gan Y, Wang Y, Mei L, et al. Recent progress in drug delivery[J]. Acta Pharm Sin B. 2019;9(6):1145–1162. doi:10.1016/j.apsb.2019.08.003.
  • Zhu G, Mei L, Vishwasrao HD, Jacobson O, Wang Z, Liu Y, Yung BC, Fu X, Jin A, Niu G, et al. Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy[J]. Nat Commun. 2017;8(1):1482. doi:10.1038/s41467-017-01386-7.
  • Hu C, Yang X, Liu R, Ruan S, Zhou Y, Xiao W, Yu W, Yang C, Gao H. Coadministration of iRGD with multistage responsive nanoparticles enhanced tumor targeting and penetration abilities for breast cancer therapy[J]. ACS Appl Mater Interfaces. 2018;10(26):22571–22579. doi:10.1021/acsami.8b04847.
  • Liu ZH, Xu HL, Han GW, Tao L-N, Lu Y, Zheng S-Y, Fang W-H, He F. A self-assembling nanoparticle: implications for the development of thermostable vaccine candidates[J]. Int J Biol Macromol. 2021;183:2162–2173. doi:10.1016/j.ijbiomac.2021.06.024.
  • Deshpande S, Masurkar ND, Girish VM, Desai M, Chakraborty G, Chan JM, Drum CL. Thermostable exoshells fold and stabilize recombinant proteins[J]. Nat Commun. 2017;8(1):1442. doi:10.1038/s41467-017-01585-2.
  • Chen W, Jiang M, Yu W, Xu Z, Liu X, Jia Q, Guan X, Zhang W. CpG-based nanovaccines for cancer immunotherapy[J]. Int J Nanomedicine. 2021;16:5281–5299. doi:10.2147/IJN.S317626.
  • Liang Z, Cui X, Yang L, Hu Q, Li D, Zhang X, Han L, Shi S, Shen Y, Zhao W, et al. Co-Assembled nanocomplexes of peptide neoantigen Adpgk and Toll-like receptor 9 agonist CpG ODN for efficient colorectal cancer immunotherapy[J]. Int J Pharm. 2021;608:121091. doi:10.1016/j.ijpharm.2021.121091.
  • Li X, Narayanan S, Michaelis VK, Ong TC, Keeler EG, Kim H, Mckay IS, Griffin RG, Wang EN. Zeolite Y adsorbents with high vapor uptake capacity and robust cycling stability for potential applications in advanced adsorption heat pumps[J]. Microporous Mesoporous Mater. 2015;201:151–159.
  • Sun B, Gillard M, Wu Y, Wu P, Xu ZP, Gu W. Bisphosphonate stabilized calcium phosphate nanoparticles for effective delivery of Plasmid DNA to Macrophages[J]. ACS Appl Bio Mater. 2020;3(2):986–996. doi:10.1021/acsabm.9b00994.
  • Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D. Nanoparticle-based vaccines against respiratory viruses[J]. Front Immunol. 2019;10:22. doi:10.3389/fimmu.2019.00022.
  • Marasini N, Giddam AK, Khalil ZG, Hussein WM, Capon RJ, Batzloff MR, Good MF, Toth I, Skwarczynski M. Double adjuvanting strategy for peptide-based vaccines: trimethyl chitosan nanoparticles for lipopeptide delivery[J]. Nanomedicine (Lond). 2016;11(24):3223–3235. doi:10.2217/nnm-2016-0291.
  • Demento SL, Siefert AL, Bandyopadhyay A, Sharp FA, Fahmy TM. Pathogenassociated molecular patterns on biomaterials: a paradigm for engineering new vaccines[J]. Trends Biotechnol. 2011;29(6):294–306. doi:10.1016/j.tibtech.2011.02.004.
  • Aikins ME, Xu C, Moon JJ. Engineered nanoparticles for cancer vaccination and immunotherapy[J]. Acc Chem Res. 2020;53(10):2094–2105. doi:10.1021/acs.accounts.0c00456.
  • Fusciello M, Fontana F, Tahtinen S, Capasso C, Feola S, Martins B, Chiaro J, Peltonen K, Ylösmäki L, Ylösmäki E, et al. Artificially cloaked viral nanovaccine for cancer immunotherapy[J]. Nat Commun. 2019;10(1):5747. doi:10.1038/s41467-019-13744-8.
  • Xie X, Feng Y, Zhang H, Su Q, Song T, Yang G, Li N, Wei X, Li T, Qin X, et al. Remodeling tumor immunosuppressive microenvironment via a novel bioactive nanovaccines potentiates the efficacy of cancer immunotherapy[J]. Bioact Mater. 2022;16:107–119. doi:10.1016/j.bioactmat.2022.03.008.
  • Wang T, Zhang H, Qiu W, Han Y, Liu H, Li Z. Biomimetic nanoparticles directly remodel immunosuppressive microenvironment for boosting glioblastoma immunotherapy[J]. Bioact Mater. 2022;16:418–432. doi:10.1016/j.bioactmat.2021.12.029.
  • Li J, Huang D, Cheng R, Figueiredo P, Fontana F, Correia A, Wang S, Liu Z, Kemell M, Torrieri G, et al. Multifunctional biomimetic nanovaccines based on photothermal and weak-immunostimulatory nanoparticulate cores for the immunotherapy of solid tumors[J]. Adv Mater. 2022;34(9):e2108012. doi:10.1002/adma.202108012.
  • Liu Y, Yao L, Cao W, Liu Y, Zhai W, Wu Y, Wang B, Gou S, Qin Y, Qi Y, et al. Dendritic cell targeting peptide-based nanovaccines for enhanced cancer immunotherapy[J]. ACS Appl Bio Mater. 2019;2(3):1241–1254. doi:10.1021/acsabm.8b00811.
  • Shae D, Baljon JJ, Wehbe M, Christov PP, Becker KW, Kumar A, Suryadevara N, Carson CS, Palmer CR, Knight FC, et al. Co-delivery of peptide neoantigens and stimulator of interferon genes agonists enhances response to cancer vaccines[J]. ACS Nano. 2020;14(8):9904–9916. doi:10.1021/acsnano.0c02765.
  • Carson CS, Becker KW, Garland KM, Pagendarm HM, Stone PT, Arora K, Wang-Bishop L, Baljon JJ, Cruz LD, Joyce S, et al. A nanovaccine for enhancing cellular immunity via cytosolic co-delivery of antigen and polyIC RNA[J]. J Control Release. 2022;345:354–370. doi:10.1016/j.jconrel.2022.03.020.
  • Stickdorn J, Stein L, Arnold-Schild D, Hahlbrock J, Medina-Montano C, Bartneck J, Ziß T, Montermann E, Kappel C, Hobernik D, et al. Systemically administered TLR7/8 agonist and antigen-conjugated nanogels govern immune responses against tumors[J]. ACS Nano. 2022;16(3):4426–4443. doi:10.1021/acsnano.1c10709.
  • Zhang L, Wang K, Huang Y, Zhang H, Zhou L, Li A, Sun Y. Photosensitizer-induced HPV16 E7 nanovaccines for cervical cancer immunotherapy[J]. Biomaterials. 2022;282:121411. doi:10.1016/j.biomaterials.2022.121411.
  • Xia H, Qin M, Wang Z, Wang Y, Chen B, Wan F, Tang M, Pan X, Yang Y, Liu J, et al. A pH-/enzyme-responsive nanoparticle selectively targets endosomal toll-like receptors to potentiate robust cancer vaccination[J]. Nano Lett. 2022;22(7):2978–2987. doi:10.1021/acs.nanolett.2c00185.
  • Song H, Su Q, Shi W, Huang P, Zhang C, Zhang C, Liu Q, Wang W. Antigen epitope-TLR7/8a conjugate as self-assembled carrier-free nanovaccine for personalized immunotherapy[J]. Acta Biomater. 2022;141:398–407. doi:10.1016/j.actbio.2022.01.004.
  • Chen J, Fang H, Hu Y, Wu J, Zhang S, Feng Y, Lin L, Tian H, Chen X. Combining mannose receptor mediated nanovaccines and gene regulated PD-L1 blockade for boosting cancer immunotherapy[J]. Bioact Mater. 2022;7:167–180. doi:10.1016/j.bioactmat.2021.05.036.
  • Xiong X, Zhao J, Pan J, Liu C, Guo X, Zhou S. Personalized nanovaccine coated with calcinetin-expressed cancer cell membrane antigen for cancer immunotherapy[J]. Nano Lett. 2021;21(19):8418–8425. doi:10.1021/acs.nanolett.1c03004.
  • Su R, Chong G, Dong H, Gu J, Zang J, He R, Sun J, Zhang T, Zhao Y, Zheng X, et al. Nanovaccine biomineralization for cancer immunotherapy: a NADPH oxidase-inspired strategy for improving antigen cross-presentation via lipid peroxidation[J]. Biomaterials. 2021;277:121089. doi:10.1016/j.biomaterials.2021.121089.
  • Luo Z, He T, Liu P, Yi Z, Zhu S, Liang X, Kang E, Gong C, Liu X. Self-Adjuvanted Molecular Activator (SeaMac) nanovaccines promote cancer immunotherapy[J]. Adv Healthc Mater. 2021;10(7):e2002080. doi:10.1002/adhm.202002080.
  • Zhang J, Fan J, Skwarczynski M, Stephenson RJ, Toth I, Hussein WM. Peptide-based nanovaccines in the treatment of cervical cancer: a review of recent advances[J]. biomaterials. 2022;17:869–900. doi:10.2147/IJN.S269986.
  • Jiang J. Cell-penetrating peptide-mediated nanovaccine delivery[J]. Curr Drug Targets. 2021;22:896–912.