1,434
Views
0
CrossRef citations to date
0
Altmetric
Immunotherapeutics – Meeting Report

CIMT 2022: Report on the 19th Annual Meeting of the Association for Cancer Immunotherapy

Article: 2124785 | Received 26 Aug 2022, Accepted 10 Sep 2022, Published online: 12 Oct 2022

References

  • Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E, Wunderlich JR, Mixon A, Farid S, Dudley ME, et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Invest [Internet]. 2014;124(5):1–11. doi:10.1172/JCI73639.
  • Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, Prickett TD, Gartner JJ, Crystal JS, Roberts IM, et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med [Internet]. 2016;22(4):433–38. doi:10.1038/nm.4051.
  • Gorris MAJ, van der Woude LL, Kroeze LI, Bol K, Verrijp K, Amir AL, Meek J, Textor J, Figdor CG, de Vries IJM. Paired primary and metastatic lesions of patients with ipilimumab-treated melanoma: high variation in lymphocyte infiltration and HLA-ABC expression whereas tumor mutational load is similar and correlates with clinical outcome. J Immunother Cancer [Internet]. 2022;10. http://www.ncbi.nlm.nih.gov/pubmed/35550553.
  • DuPage M, Dooley AL, Jacks T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc [Internet]. 2009;4(7):1064–72. doi:10.1038/nprot.2009.95.
  • DuPage M, Cheung AF, Mazumdar C, Winslow MM, Bronson R, Schmidt LM, Crowley D, Chen J, Jacks T. Endogenous T cell responses to antigens expressed in lung adenocarcinomas delay malignant tumor progression. Cancer Cell [Internet]. 2011;19(1):72–85. doi:10.1016/j.ccr.2010.11.011.
  • Burger ML, Cruz AM, Crossland GE, Gaglia G, Ritch CC, Blatt SE, Bhutkar A, Canner D, Kienka T, Tavana SZ, et al. Antigen dominance hierarchies shape TCF1+ progenitor CD8 T cell phenotypes in tumors. Cell [Internet]. 2021;184(19):4996–5014.e26. doi:10.1016/j.cell.2021.08.020.
  • Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, Lieb DJ, Chen JH, Frederick DT, Barzily-Rokni M, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell [Internet]. 2019;176(1–2):404. doi:10.1016/j.cell.2018.12.034.
  • Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, Yates KB, Lako A, Felt K, Naik GS, et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol [Internet]. 2019;20(3):326–36. doi:10.1038/s41590-019-0312-6.
  • Bruni D, Angell HK, Galon J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer [Internet]. 2020;20(11):662–80. doi:10.1038/s41568-020-0285-7.
  • Veglia F, Hashimoto A, Dweep H, Sanseviero E, De Leo A, Tcyganov E, Kossenkov A, Mulligan C, Nam B, Masters G, et al. Analysis of classical neutrophils and polymorphonuclear myeloid-derived suppressor cells in cancer patients and tumor-bearing mice. J Exp Med [Internet]. 2021;218. http://www.ncbi.nlm.nih.gov/pubmed/33566112.
  • Patel S, Fu S, Mastio J, Dominguez GA, Purohit A, Kossenkov A, Lin C, Alicea-Torres K, Sehgal M, Nefedova Y, et al. Unique pattern of neutrophil migration and function during tumor progression. Nat Immunol [Internet]. 2018;19(11):1236–47. doi:10.1038/s41590-018-0229-5.
  • Hashimoto A, Sarker D, Reebye V, Jarvis S, Sodergren MH, Kossenkov A, Sanseviero E, Raulf N, Vasara J, Andrikakou P, et al. Upregulation of C/EBPα inhibits suppressive activity of myeloid cells and potentiates antitumor response in mice and patients with cancer. Clin Cancer Res [Internet]. 2021;27(21):5961–78. doi:10.1158/1078-0432.CCR-21-0986.
  • Motz GT, Coukos G. Deciphering and reversing tumor immune suppression. Immunity [Internet]. 2013;39(1):61–73. doi:10.1016/j.immuni.2013.07.005.
  • Schmittnaegel M, Rigamonti N, Kadioglu E, Cassará A, Wyser Rmili C, Kiialainen A, Kienast Y, Mueller H-J, Ooi C-H, Laoui D, et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci Transl Med [Internet]. 2017;9. http://www.ncbi.nlm.nih.gov/pubmed/28404865.
  • Martinez-Usatorre A, Kadioglu E, Boivin G, Cianciaruso C, Guichard A, Torchia B, Zangger N, Nassiri S, Keklikoglou I, Schmittnaegel M, et al. Overcoming microenvironmental resistance to PD-1 blockade in genetically engineered lung cancer models. Sci Transl Med [Internet]. 2021;13. http://www.ncbi.nlm.nih.gov/pubmed/34380768.
  • Gudipati V, Rydzek J, Doel-Perez I, Gonçalves VDR, Scharf L, Königsberger S, Lobner E, Kunert R, Einsele H, Stockinger H, et al. Inefficient CAR-proximal signaling blunts antigen sensitivity. Nat Immunol [Internet]. 2020;21(8):848–56. doi:10.1038/s41590-020-0719-0.
  • Davenport AJ, Cross RS, Watson KA, Liao Y, Shi W, Prince HM, Beavis PA, Trapani JA, Kershaw MH, Ritchie DS, et al. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity. Proc Natl Acad Sci USA [internet]. 2018;115(9):E2068–76. doi:10.1073/pnas.1716266115.
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell [Internet]. 2000;100(1):57–70. doi:10.1016/S0092-8674(00)81683-9.
  • Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov [Internet]. 2022;12(1):31–46. doi:10.1158/2159-8290.CD-21-1059.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell [Internet]. 2011;144(5):646–74. doi:10.1016/j.cell.2011.02.013.
  • Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell [Internet]. 2012;21(3):309–22. doi:10.1016/j.ccr.2012.02.022.
  • Larkin J, Chiarion-Sileni V, Gonzalez R, Grob J-J, Rutkowski P, Lao CD, Cowey CL, Schadendorf D, Wagstaff J, Dummer R, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med [Internet]. 2019;381(16):1535–46. doi:10.1056/NEJMoa1910836.
  • Hanahan D. Rethinking the war on cancer. Lancet (London, England [Internet]. 2014;383(9916):558–63. doi:10.1016/S0140-6736(13)62226-6.
  • Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim T-Y, Kudo M, Breder V, Merle P, Kaseb AO, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med [Internet]. 2020;382(20):1894–905. doi:10.1056/NEJMoa1915745.
  • Ferrucci PF, Di Giacomo AM, Del Vecchio M, Atkinson V, Schmidt H, Schachter J, Queirolo P, Long GV, Stephens R, Svane IM, et al. KEYNOTE-022 part 3: a randomized, double-blind, phase 2 study of pembrolizumab, dabrafenib, and trametinib in BRAF-mutant melanoma. J Immunother Cancer [Internet]. 2020;8. http://www.ncbi.nlm.nih.gov/pubmed/33361337.
  • Legut M, Dolton G, Mian AA, Ottmann OG, Sewell AK. CRISPR-Mediated TCR replacement generates superior anticancer transgenic T cells. Blood [Internet]. 2018;131:311–22. http://www.ncbi.nlm.nih.gov/pubmed/29122757.
  • Whalley T, Dolton G, Brown PE, Wall A, Wooldridge L, van den Berg H, Fuller A, Hopkins JR, Crowther MD, Attaf M, et al. GPU-accelerated discovery of pathogen-derived molecular mimics of a T-cell insulin epitope. Front Immunol [Internet]. 2020;11:296. doi:10.3389/fimmu.2020.00296.
  • Herbst RS, Giaccone G, de Marinis F, Reinmuth N, Vergnenegre A, Barrios CH, Morise M, Felip E, Andric Z, Geater S, et al. Atezolizumab for first-line treatment of PD-L1–Selected patients with NSCLC. N Engl J Med [Internet]. 2020;383(14):1328–39. doi:10.1056/NEJMoa1917346.
  • Simoni Y, Becht E, Fehlings M, Loh CY, Koo S, Teng KWW, Yeong JPS, Nahar R, Zhang T, Kared H, et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature [Internet]. 2018;557(7706):575–79. doi:10.1038/s41586-018-0130-2.
  • Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell TR, Hellmann MD, Zahurak M, Yang SC, Jones DR, Broderick S, et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N Engl J Med [Internet]. 2018;378(21):1976–86. doi:10.1056/NEJMoa1716078.
  • Forde PM, Spicer J, Lu S, Provencio M, Mitsudomi T, Awad MM, Felip E, Broderick SR, Brahmer JR, Swanson SJ, et al. Neoadjuvant Nivolumab plus chemotherapy in resectable lung cancer. N Engl J Med [Internet]. 2022;386(21):1973–85. doi:10.1056/NEJMoa2202170.
  • Caushi JX, Zhang J, Ji Z, Vaghasia A, Zhang B, Hsiue E-C, Mog BJ, Hou W, Justesen S, Blosser R, et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature [Internet]. 2021;596(7870):126–32. doi:10.1038/s41586-021-03752-4.
  • Zhang J, Ji Z, Caushi JX, El Asmar M, Anagnostou V, Cottrell TR, Chan HY, Suri P, Guo H, Merghoub T, et al. Compartmental analysis of T-cell clonal dynamics as a function of pathologic response to neoadjuvant PD-1 blockade in resectable non–small cell lung cancer. Clin Cancer Res [Internet]. 2020;26(6):1327–37. doi:10.1158/1078-0432.CCR-19-2931.
  • Andersen MH. The balance players of the adaptive immune system. Cancer Res [Internet]. 2018;78(6):1379–82. doi:10.1158/0008-5472.CAN-17-3607.
  • Sørensen RB, Hadrup SR, Svane IM, Hjortsø MC, Thor Straten P, Andersen MH. Indoleamine 2,3-dioxygenase specific, cytotoxic T cells as immune regulators. Blood [Internet]. 2011;117(7):2200–10. doi:10.1182/blood-2010-06-288498.
  • Iversen TZ, Engell-Noerregaard L, Ellebaek E, Andersen R, Larsen SK, Bjoern J, Zeyher C, Gouttefangeas C, Thomsen BM, Holm B, et al. Long-Lasting disease stabilization in the absence of toxicity in metastatic lung cancer patients vaccinated with an epitope derived from indoleamine 2,3 dioxygenase. Clin Cancer Res [Internet]. 2014;20(1):221–32. doi:10.1158/1078-0432.CCR-13-1560.
  • Munir S, Andersen GH, Ö M, Donia M, Frøsig TM, Larsen SK, Klausen TW, Svane IM, Andersen MH. HLA-Restricted CTL that are specific for the immune checkpoint ligand PD-L1 occur with high frequency in cancer patients. Cancer Res [Internet]. 2013;73(6):1764–76. doi:10.1158/0008-5472.CAN-12-3507.
  • Jørgensen NG, Klausen U, Grauslund JH, Helleberg C, Aagaard TG, Do TH, Ahmad SM, Olsen LR, Klausen TW, Breinholt MF, et al. Peptide vaccination against PD-L1 with IO103 a novel immune modulatory vaccine in multiple myeloma: a phase i first-in-human trial. Front Immunol [Internet]. 2020;11:595035. doi:10.3389/fimmu.2020.595035.
  • Dey S, Sutanto-Ward E, Kopp KL, DuHadaway J, Mondal A, Ghaban D, Lecoq I, Zocca M-B, Merlo LMF, Mandik-Nayak L, et al. Peptide vaccination directed against IDO1-expressing immune cells elicits CD8+ and CD4+ T-cell-mediated antitumor immunity and enhanced anti-PD1 responses. J Immunother Cancer [Internet]. 2020;8. http://www.ncbi.nlm.nih.gov/pubmed/32690770.
  • Kjeldsen JW, Lorentzen CL, Martinenaite E, Ellebaek E, Donia M, Holmstroem RB, Klausen TW, Madsen CO, Ahmed SM, Weis-Banke SE, et al. A phase 1/2 trial of an immune-modulatory vaccine against IDO/PD-L1 in combination with nivolumab in metastatic melanoma. Nat Med. 2021;27(12):2212–23. doi:10.1038/s41591-021-01544-x.
  • Aaboe Jørgensen M, Ugel S, Linder Hübbe M, Carretta M, Perez-Penco M, Weis-Banke SE, Martinenaite E, Kopp K, Chapellier M, Adamo A, et al. Arginase 1–based immune modulatory vaccines induce anticancer immunity and synergize with anti–PD-1 checkpoint blockade. Cancer Immunol Res [Internet]. 2021;9(11):1316–26. doi:10.1158/2326-6066.CIR-21-0280.
  • Dyck L, Lynch L. Cancer, obesity and immunometabolism - connecting the dots. Cancer Lett [Internet]. 2018;417:11–20. doi:10.1016/j.canlet.2017.12.019.
  • Dyck L, Prendeville H, Raverdeau M, Wilk MM, Loftus RM, Douglas A, McCormack J, Moran B, Wilkinson M, Mills EL, et al. Suppressive effects of the obese tumor microenvironment on CD8 T cell infiltration and effector function. J Exp Med [Internet]. 2022;219. http://www.ncbi.nlm.nih.gov/pubmed/35103755.
  • Michelet X, Dyck L, Hogan A, Loftus RM, Duquette D, Wei K, Beyaz S, Tavakkoli A, Foley C, Donnelly R, et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat Immunol [Internet]. 2018;19(12):1330–40. doi:10.1038/s41590-018-0251-7.
  • McQuade JL, Daniel CR, Hess KR, Mak C, Wang DY, Rai RR, Park JJ, Haydu LE, Spencer C, Wongchenko M, et al. Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis. Lancet Oncol [Internet]. 2018;19:310–22. http://www.ncbi.nlm.nih.gov/pubmed/29449192.
  • DePeaux K, Delgoffe GM. Metabolic barriers to cancer immunotherapy. Nat Rev Immunol. 2021;21(12):785–97. doi:10.1038/s41577-021-00541-y.
  • Opitz CA, Somarribas Patterson LF, Mohapatra SR, Dewi DL, Sadik A, Platten M, Trump S. The therapeutic potential of targeting tryptophan catabolism in cancer. Br J Cancer [Internet]. 2020;122(1):30–44. doi:10.1038/s41416-019-0664-6.
  • Long GV, Dummer R, Hamid O, Gajewski TF, Caglevic C, Dalle S, Arance A, Carlino MS, Grob J-J, Kim TM, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol [Internet]. 2019;20(8):1083–97. doi:10.1016/S1470-2045(19)30274-8.
  • Öztürk S, Kalter V, Roessner PM, Sunbul M, Seiffert M. IDO1-targeted therapy does not control disease development in the Eµ-TCL1 mouse model of chronic lymphocytic leukemia. Cancers (Basel) [Internet]. 2021;13. http://www.ncbi.nlm.nih.gov/pubmed/33920868.
  • Sadik A, Somarribas Patterson LF, Öztürk S, Mohapatra SR, Panitz V, Secker PF, Pfänder P, Loth S, Salem H, Prentzell MT, et al. IL4I1 is a metabolic immune checkpoint that activates the AHR and promotes tumor progression. Cell [Internet]. 2020;182(5):1252–70.e34. doi:10.1016/j.cell.2020.07.038.
  • Hanna BS, Llaó-Cid L, Iskar M, Roessner PM, Klett LC, Wong JKL, Paul Y, Ioannou N, Öztürk S, Mack N, et al. Interleukin-10 receptor signaling promotes the maintenance of a PD-1int TCF-1+ CD8+ T cell population that sustains anti-tumor immunity. Immunity [Internet]. 2021;54(12):2825–41.e10. doi:10.1016/j.immuni.2021.11.004.
  • Martinez GJ, Pereira RM, Äijö T, Kim EY, Marangoni F, Pipkin ME, Togher S, Heissmeyer V, Zhang YC, Crotty S, et al. The transcription factor NFAT promotes exhaustion of activated CD8 + T cells. Immunity [Internet]. 2015;42(2):265–78. doi:10.1016/j.immuni.2015.01.006.
  • Neven B, Mamessier E, Bruneau J, Kaltenbach S, Kotlarz D, Suarez F, Masliah-Planchon J, Billot K, Canioni D, Frange P, et al. A Mendelian predisposition to B-cell lymphoma caused by IL-10R deficiency. Blood [Internet]. 2013;122(23):3713–22. doi:10.1182/blood-2013-06-508267.
  • Saha T, Dash C, Jayabalan R, Khiste S, Kulkarni A, Kurmi K, Mondal J, Majumder PK, Bardia A, Jang HL, et al. Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells. Nat Nanotechnol [Internet]. 2022;17(1):98–106. doi:10.1038/s41565-021-01000-4.
  • Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, Yizhak K, Sade-Feldman M, Blando J, Han G, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature [Internet]. 2020;577(7791):549–55. doi:10.1038/s41586-019-1922-8.
  • Cai R, Pan C, Ghasemigharagoz A, Todorov MI, Förstera B, Zhao S, Bhatia HS, Parra-Damas A, Mrowka L, Theodorou D, et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nat Neurosci [Internet]. 2019;22(2):317–27. doi:10.1038/s41593-018-0301-3.
  • Pan C, Schoppe O, Parra-Damas A, Cai R, Todorov MI, Gondi G, von Neubeck B, Böğürcü-Seidel N, Seidel S, Sleiman K, et al. Deep learning reveals cancer metastasis and therapeutic antibody targeting in the entire body. Cell [Internet]. 2019;179(7):1661–76.e19. doi:10.1016/j.cell.2019.11.013.
  • Bhatia HS, Brunner A-D, Rong Z, Mai H, Thielert M, Al-Maskari R, Paetzold JC, Kofler F, Todorov MI, Ali M, et al. Proteomics of spatially identified tissues in whole organs. bioRxiv [Internet]. 2021: 2021.11.02.466753. http://biorxiv.org/content/early/2021/11/04/2021.11.02.466753.abstract.
  • Kolabas ZI, Kuemmerle LB, Perneczky R, Förstera B, Büttner M, Caliskan OS, Ali M, Rong Z, Mai H, Hummel S, et al. Multi-Omics and 3D-imaging reveal bone heterogeneity and unique calvaria cells in neuroinflammation. bioRxiv [Internet]. 2021:2021.12.24.473988. http://biorxiv.org/content/early/2021/12/25/2021.12.24.473988.abstract.
  • Schraivogel D, Kuhn TM, Rauscher B, Rodríguez-Martínez M, Paulsen M, Owsley K, Middlebrook A, Tischer C, Ramasz B, Ordoñez-Rueda D, et al. High-speed fluorescence image–enabled cell sorting. Science [Internet]. 2022;375(6578):315–20. doi:10.1126/science.abj3013.
  • Schraivogel D, Gschwind AR, Milbank JH, Leonce DR, Jakob P, Mathur L, Korbel JO, Merten CA, Velten L, Steinmetz LM. Targeted Perturb-seq enables genome-scale genetic screens in single cells. Nat Methods [Internet]. 2020;17(6):629–35. doi:10.1038/s41592-020-0837-5.
  • Voabil P, de Bruijn M, Roelofsen LM, Hendriks SH, Brokamp S, van den Braber M, Broeks A, Sanders J, Herzig P, Zippelius A, et al. An ex vivo tumor fragment platform to dissect response to PD-1 blockade in cancer. Nat Med [Internet]. 2021;27(7):1250–61. doi:10.1038/s41591-021-01398-3.
  • Kaptein P, Jacoberger-Foissac C, Dimitriadis P, Voabil P, de Bruijn M, Brokamp S, Reijers I, Versluis J, Nallan G, Triscott H, et al. Addition of interleukin-2 overcomes resistance to neoadjuvant CTLA4 and PD1 blockade in ex vivo patient tumors. Sci Transl Med [Internet]. 2022;14(642):eabj9779. doi:10.1126/scitranslmed.abj9779.
  • Tarab-Ravski D, Stotsky-Oterin L, Peer D. Delivery strategies of RNA therapeutics to leukocytes. J Control Release [Internet]. 2022;342:362–71. doi:10.1016/j.jconrel.2022.01.016.
  • Kedmi R, Veiga N, Ramishetti S, Goldsmith M, Rosenblum D, Dammes N, Hazan-Halevy I, Nahary L, Leviatan-Ben-Arye S, Harlev M, et al. A modular platform for targeted RNAi therapeutics. Nat Nanotechnol [Internet]. 2018;13(3):214–19. doi:10.1038/s41565-017-0043-5.
  • Yong S-B, Ramishetti S, Goldsmith M, Diesendruck Y, Hazan-Halevy I, Chatterjee S, Somu Naidu G, Ezra A, Peer D. Dual-targeted lipid nanotherapeutic boost for chemo-immunotherapy of cancer. Adv Mater [Internet]. 2022;34(13):e2106350. doi:10.1002/adma.202106350.
  • Dammes N, Goldsmith M, Ramishetti S, Dearling JLJ, Veiga N, Packard AB, Peer D. Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics. Nat Nanotechnol [Internet]. 2021;16(9):1030–38. doi:10.1038/s41565-021-00928-x.
  • Rosenblum D, Gutkin A, Kedmi R, Ramishetti S, Veiga N, Jacobi AM, Schubert MS, Friedmann-Morvinski D, Cohen ZR, Behlke MA, et al. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci Adv [Internet]. 2020;6. http://www.ncbi.nlm.nih.gov/pubmed/33208369.
  • Silva JM, Zupancic E, Vandermeulen G, Oliveira VG, Salgado A, Videira M, Gaspar M, Graca L, Préat V, Florindo HF. In vivo delivery of peptides and Toll-like receptor ligands by mannose-functionalized polymeric nanoparticles induces prophylactic and therapeutic anti-tumor immune responses in a melanoma model. J Control Release [Internet]. 2015;198:91–103. doi:10.1016/j.jconrel.2014.11.033.
  • Conniot J, Scomparin A, Peres C, Yeini E, Pozzi S, Matos AI, Kleiner R, Moura LIF, Zupančič E, Viana AS, et al. Immunization with mannosylated nanovaccines and inhibition of the immune-suppressing microenvironment sensitizes melanoma to immune checkpoint modulators. Nat Nanotechnol [Internet]. 2019;14(9):891–901. doi:10.1038/s41565-019-0512-0.
  • Corbet C, Feron O. Tumour acidosis: from the passenger to the driver’s seat. Nat Rev Cancer [Internet]. 2017;17(10):577–93. doi:10.1038/nrc.2017.77.
  • Bohn T, Rapp S, Luther N, Klein M, Bruehl T-J, Kojima N, Aranda Lopez P, Hahlbrock J, Muth S, Endo S, et al. Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat Immunol [Internet]. 2018;19(12):1319–29. doi:10.1038/s41590-018-0226-8.
  • Seifert R, Lushington GH, Mou T-C, Gille A, Sprang SR. Inhibitors of membranous adenylyl cyclases. Trends Pharmacol Sci [Internet]. 2012;33(2):64–78. doi:10.1016/j.tips.2011.10.006.
  • Sekine H, Yamamoto M, Motohashi H. Tumors sweeten macrophages with acids. Nat Immunol [Internet]. 2018;19(12):1281–83. doi:10.1038/s41590-018-0258-0.
  • Johann K, Bohn T, Shahneh F, Luther N, Birke A, Jaurich H, Helm M, Klein M, Raker VK, Bopp T, et al. Therapeutic melanoma inhibition by local micelle-mediated cyclic nucleotide repression. Nat Commun [Internet]. 2021;12(1):5981. doi:10.1038/s41467-021-26269-w.
  • Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J [Internet]. 2021;11(4):69. doi:10.1038/s41408-021-00459-7.
  • Reinhard K, Rengstl B, Oehm P, Michel K, Billmeier A, Hayduk N, Klein O, Kuna K, Ouchan Y, Wöll S, et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science. 2020;367(6476):446–53. doi:10.1126/science.aay5967.
  • Ruggiero E, Carnevale E, Prodeus A, Magnani ZI, Camisa B, Merelli I, Politano C, Stasi L, Potenza A, Cianciotti BC, et al. CRISPR-Based gene disruption and integration of high-avidity, WT1-specific T cell receptors improve antitumor T cell function. Sci Transl Med [Internet]. 2022;14(631):eabg8027. doi:10.1126/scitranslmed.abg8027.
  • Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res [Internet]. 2009;15(17):5323–37. doi:10.1158/1078-0432.CCR-09-0737.
  • Gattinoni L, Speiser DE, Lichterfeld M, Bonini C. T memory stem cells in health and disease. Nat Med [Internet]. 2017;23(1):18–27. doi:10.1038/nm.4241.
  • Sabatino M, Hu J, Sommariva M, Gautam S, Fellowes V, Hocker JD, Dougherty S, Qin H, Klebanoff CA, Fry TJ, et al. Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood [Internet]. 2016;128:519–28. http://www.ncbi.nlm.nih.gov/pubmed/27226436.