1,823
Views
2
CrossRef citations to date
0
Altmetric
Immunology

Using the power of innate immunoprofiling to understand vaccine design, infection, and immunity

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2267295 | Received 13 Jul 2023, Accepted 03 Oct 2023, Published online: 26 Oct 2023

References

  • Brodin P, Davis MM. Human immune system variation. Nat Rev Immunol. 2017;17(1):21–14. doi:10.1038/nri.2016.125.
  • Tay A, Pavesi A, Yazdi SR, Lim CT, Warkiani ME. Advances in microfluidics in combating infectious diseases. Biotechnol Adv. 2016;34(4):404–21. doi:10.1016/j.biotechadv.2016.02.002.
  • Davis MM, Tato CM, Furman D. Systems immunology: just getting started. Nat Immunol. 2017;18(7):725–32. doi:10.1038/ni.3768.
  • Yan J, Risacher SL, Shen L, Saykin AJ. Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Brief Bioinform. 2018;19(6):1370–81. doi:10.1093/bib/bbx066.
  • Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18(1):83. doi:10.1186/s13059-017-1215-1.
  • Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol. 2018;9. doi:10.3389/fphys.2018.00113.
  • Yunna C, Mengru H, Lei W, Weidong C. Macrophage m1/m2 polarization. Eur J Pharmacol. 2020;877(173090):173090. doi:10.1016/j.ejphar.2020.173090.
  • Murray Peter J, Allen Judith E, Biswas Subhra K, Fisher Edward A, Gilroy Derek W, Goerdt S, Gordon S, Hamilton John A, Ivashkiv Lionel B, Lawrence T, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20. doi:10.1016/j.immuni.2014.06.008.
  • Chirumbolo S, Bjørklund G, Sboarina A, Vella A. The role of basophils as innate immune regulatory cells in allergy and immunotherapy. Hum Vaccin Immunother. 2018;14(4):815–31. doi:10.1080/21645515.2017.1417711.
  • Uchida AM, Ro G, Qiang L, Peterson KA, Round J, Dougan M, Dougan SK. Human differentiated eosinophils release il-13 in response to il-33 stimulation. Front Immunol. 2022;13. doi:10.3389/fimmu.2022.946643.
  • Bulfone-Paus S, Bahri R. Mast cells as regulators of t cell responses.Journal. Front Immunol. 2015;6. doi:10.3389/fimmu.2015.00394.
  • Ferris ST, Durai V, Wu R, Theisen DJ, Ward JP, Bern MD, Davidson JT, Bagadia P, Liu T, Briseño CG, et al. Cdc1 prime and are licensed by cd4+ t cells to induce anti-tumour immunity. Nature. 2020;584(7822):624–9. doi:10.1038/s41586-020-2611-3.
  • O’Connor MH, Muir R, Chakhtoura M, Fang M, Moysi E, Moir S, Carey AJ, Terk A, Nichols CN, Metcalf T, et al. A follicular regulatory innate lymphoid cell population impairs interactions between germinal center tfh and b cells. Commun Biol. 2021;4(1):563. doi:10.1038/s42003-021-02079-0.
  • Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity. 2016;44(3):439–49. doi:10.1016/j.immuni.2016.02.024.
  • Gianchecchi E, Delfino DV, Fierabracci A. Natural killer cells: potential biomarkers and therapeutic target in autoimmune diseases? Front Immunol. 2021;12:12. doi:10.3389/fimmu.2021.616853.
  • Audiger C, Rahman MJ, Yun TJ, Tarbell KV, Lesage S. The importance of dendritic cells in maintaining immune tolerance. J Immunol. 2017;198(6):2223–31. doi:10.4049/jimmunol.1601629.
  • Yudanin NA, Schmitz F, Flamar A-L, Thome JJC, Tait Wojno E, Moeller JB, Schirmer M, Latorre IJ, Xavier RJ, Farber DL, et al. Spatial and temporal mapping of human innate lymphoid cells reveals elements of tissue specificity. Immunity. 2019;50(2):505–19.e504. doi:10.1016/j.immuni.2019.01.012.
  • Wang Z, Gerstein M, Snyder M. RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63. doi:10.1038/nrg2484.
  • Diallo I, Jacob RA, Vion E, Kozak RA, Mossman K, Provost P. Altered microRNA transcriptome in cultured human airway cells upon infection with sars-cov-2.Journal. Viruses. 2023;15(2):496. doi:10.3390/v15020496.
  • Bartel DP. microRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97. doi:10.1016/S0092-8674(04)00045-5.
  • Qiu H, Yang B, Chen Y, Zhu Q, Wen F, Peng M, Wang G, Guo G, Chen B, Maarouf M, et al. Influenza a virus-induced circrna circmertk negatively regulates innate antiviral responses. Microbiol Spectr. 2023;11(2):e03637–03622. doi:10.1128/spectrum.03637-22.
  • Wang TT, Sewatanon J, Memoli MJ, Wrammert J, Bournazos S, Bhaumik SK, Pinsky BA, Chokephaibulkit K, Onlamoon N, Pattanapanyasat K, et al. Igg antibodies to dengue enhanced for fcγriiia binding determine disease severity. Science. 2017;355(6323):395–8. doi:10.1126/science.aai8128.
  • Fredriksson S, Dixon W, Ji H, Koong AC, Mindrinos M, Davis RW. Multiplexed protein detection by proximity ligation for cancer biomarker validation. Nat Methods. 2007;4(4):327–9. doi:10.1038/nmeth1020.
  • Assarsson E, Lundberg M, Holmquist G, Björkesten J, Bucht Thorsen S, Ekman D, Eriksson A, Rennel Dickens E, Ohlsson S, Edfeldt G, et al. Homogenous 96-plex pea immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PloS One. 2014;9(4):e95192. doi:10.1371/journal.pone.0095192.
  • Cui M, Cheng C, Zhang L. High-throughput proteomics: a methodological mini-review. Lab Invest. 2022;102(11):1170–81. doi:10.1038/s41374-022-00830-7.
  • Filbin MR, Mehta A, Schneider AM, Kays KR, Guess JR, Gentili M, Fenyves BG, Charland NC, Gonye ALK, Gushterova I, et al. Longitudinal proteomic analysis of severe COVID-19 reveals survival-associated signatures, tissue-specific cell death, and cell-cell interactions. Cell Rep Med. 2021;2(5):100287. doi:10.1016/j.xcrm.2021.100287.
  • Arunachalam PS, Wimmers F, Mok CKP, Perera RAPM, Scott M, Hagan T, Sigal N, Feng Y, Bristow L, Tak-Yin Tsang O, et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science. 2020;369(6508):1210–20. doi:10.1126/science.abc6261.
  • Haralambieva IH, Ovsyannikova IG, Pankratz VS, Kennedy RB, Jacobson RM, Poland GA. The genetic basis for interindividual immune response variation to measles vaccine: new understanding and new vaccine approaches. Expert Rev Vaccines. 2013;12(1):57–70. doi:10.1586/erv.12.134.
  • Uffelmann E, Huang QQ, Munung NS, de Vries J, Okada Y, Martin AR, Martin HC, Lappalainen T, Posthuma D. Genome-wide association studies. Nat Rev Methods Primers. 2021;1(1):59. doi:10.1038/s43586-021-00056-9.
  • Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. Linking disease associations with regulatory information in the human genome. Genome Res. 2012;22(9):1748–59. doi:10.1101/gr.136127.111.
  • Cano-Gamez E, Trynka G. From gwas to function: using functional genomics to identify the mechanisms underlying complex diseases. Front Genet. 2020;11. doi:10.3389/fgene.2020.00424.
  • Niemi MEK, Karjalainen J, Liao RG, Neale BM, Daly M, Ganna A, Pathak GA, Andrews SJ, Kanai M, Veerapen K, et al. Mapping the human genetic architecture of covid-19. Nature. 2021;600(7889):472–7. doi:10.1038/s41586-021-03767-x.
  • Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, Ogishi M, Sabli IKD, Hodeib S, Korol C, et al. Inborn errors of type i ifn immunity in patients with life-threatening covid-19. Science. 2020;370(6515):eabd4570.
  • Araújo R, Bento LFN, Fonseca TAH, Von Rekowski CP, da Cunha BR, Calado CRC. Infection biomarkers based on metabolomics. Metabolites. 2022;12(2):92. doi:10.3390/metabo12020092.
  • Costanzo M, Caterino M, Fedele R, Cevenini A, Pontillo M, Barra L, Ruoppolo M. Covidomics: the proteomic and metabolomic signatures of covid-19. Int J Mol Sci. 2022;23(5):2414. doi:10.3390/ijms23052414.
  • Li T, Ning N, Li B, Luo D, Qin E, Yu W, Wang J, Yang G, Nan N, He Z, et al. Longitudinal metabolomics reveals ornithine cycle dysregulation correlates with inflammation and coagulation in COVID-19 severe patients. Front Microbiol. 2021;12. doi:10.3389/fmicb.2021.723818.
  • Buyukozkan M, Alvarez-Mulett S, Racanelli AC, Schmidt F, Batra R, Hoffman KL, Sarwath H, Engelke R, Gomez-Escobar L, Simmons W, et al. Integrative metabolomic and proteomic signatures define clinical outcomes in severe covid-19. iScience. 2022;25(7):104612. doi:10.1016/j.isci.2022.104612.
  • Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:5. doi:10.3389/fimmu.2014.00491.
  • Tappe D, Pérez-Girón JV, Zammarchi L, Rissland J, Ferreira DF, Jaenisch T, Gómez-Medina S, Günther S, Bartoloni A, Muñoz-Fontela C, et al. Cytokine kinetics of zika virus-infected patients from acute to reconvalescent phase. Med Microbiol Immunol. 2016;205(3):269–73. doi:10.1007/s00430-015-0445-7.
  • Tebruegge M, Dutta B, Donath S, Ritz N, Forbes B, Camacho-Badilla K, Clifford V, Zufferey C, Robins-Browne R, Hanekom W, et al. Mycobacteria-specific cytokine responses detect tuberculosis infection and distinguish latent from active tuberculosis. Am J Respir Crit Care Med. 2015;192(4):485–99. doi:10.1164/rccm.201501-0059OC.
  • Vanpouille C, Introini A, Morris SR, Margolis L, Daar ES, Dube MP, Little SJ, Smith DM, Lisco A, Gianella S. Distinct cytokine/chemokine network in semen and blood characterize different stages of hiv infection. AIDS. 2016;30(2):193–201. doi:10.1097/QAD.0000000000000964.
  • Athale S, Banchereau R, Thompson-Snipes L, Wang Y, Palucka K, Pascual V, Banchereau J. Influenza vaccines differentially regulate the interferon response in human dendritic cell subsets. Sci Transl Med. 2017;9(382):eaaf9194. doi:10.1126/scitranslmed.aaf9194.
  • Connors J, Joyner D, Mege NJ, Cusimano GM, Bell MR, Marcy J, Taramangalam B, Kim KM, Lin PJC, Tam YK, et al. Lipid nanoparticles (lnp) induce activation and maturation of antigen presenting cells in young and aged individuals. Commun Biol. 2023;6(1):188. doi:10.1038/s42003-023-04555-1.
  • Tut G, Lancaster T, Sylla P, Butler MS, Kaur N, Spalkova E, Bentley C, Amin U, Jadir A, Hulme S, et al. Antibody and cellular immune responses following dual COVID-19 vaccination within infection-naive residents of long-term care facilities: an observational cohort study. Lancet Healthy Longev. 2022;3(7):e461–e9. doi:10.1016/S2666-7568(22)00118-0.
  • Kityo C, Makamdop KN, Rothenberger M, Chipman JG, Hoskuldsson T, Beilman GJ, Grzywacz B, Mugyenyi P, Ssali F, Akondy RS, et al. Lymphoid tissue fibrosis is associated with impaired vaccine responses. J Clin Invest. 2018;128(7):2763–73. doi:10.1172/JCI97377.
  • Ellebedy AH, Jackson KJL, Kissick HT, Nakaya HI, Davis CW, Roskin KM, McElroy AK, Oshansky CM, Elbein R, Thomas S, et al. Defining antigen-specific plasmablast and memory b cell subsets in human blood after viral infection or vaccination. Nat Immunol. 2016;17(10):1226–34. doi:10.1038/ni.3533.
  • Park LM, Lannigan J, Jaimes MC. Omip-069: forty-color full spectrum flow cytometry panel for deep immunophenotyping of major cell subsets in human peripheral blood. Cytometry Part A. 2020;97(10):1044–51. doi:10.1002/cyto.a.24213.
  • van der Pan K, de Bruin-Versteeg S, Damasceno D, Hernández-Delgado A, van der Sluijs-Gelling AJ, van den Bossche WBL, de Laat IF, Díez P, Naber BAE, Diks AM, et al. Development of a standardized and validated flow cytometry approach for monitoring of innate myeloid immune cells in human blood. Front Immunol. 2022;13:13. doi:10.3389/fimmu.2022.935879.
  • Qiu P, Simonds EF, Bendall SC, Gibbs KD, Bruggner RV, Linderman MD, Sachs K, Nolan GP, Plevritis SK. Extracting a cellular hierarchy from high-dimensional cytometry data with spade. Nat Biotechnol. 2011;29(10):886–91. doi:10.1038/nbt.1991.
  • Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P, Dhaene T, Saeys Y. Flowsom: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry Part A. 2015;87(7):636–45. doi:10.1002/cyto.a.22625.
  • Becht E, McInnes L, Healy J, Dutertre C-A, Kwok IWH, Ng LG, Ginhoux F, Newell EW. Dimensionality reduction for visualizing single-cell data using umap. Nat Biotechnol. 2019;37(1):38–44. doi:10.1038/nbt.4314.
  • Krutzik PO, Nolan GP. Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods. 2006;3(5):361–8. doi:10.1038/nmeth872.
  • Leipold MD, Newell EW, Maecker HT. Multiparameter phenotyping of human pbmcs using mass cytometry. In: Shaw A, editor. Multiparameter phenotyping of human PBMCs using mass cytometry. Immunosenescence: methods and protocols. New York (NY): Springer New York; 2015. p. 81–95.
  • Tighe RM, Redente EF, Yu Y-R, Herold S, Sperling AI, Curtis JL, Duggan R, Swaminathan S, Nakano H, Zacharias WJ, et al. Improving the quality and reproducibility of flow cytometry in the lung. An official American thoracic society workshop report. Am J Respir Cell Mol Biol. 2019;61(2):150–61. doi:10.1165/rcmb.2019-0191ST.
  • Böttcher C, van der Poel M, Fernández-Zapata C, Schlickeiser S, Leman JKH, Hsiao C-C, Mizee MR, Adelia, Vincenten MCJ, Kunkel D, et al. Single-cell mass cytometry reveals complex myeloid cell composition in active lesions of progressive multiple sclerosis. Acta Neuropathol Commun. 2020;8(1):136. doi:10.1186/s40478-020-01010-8.
  • Rodríguez-Lorenzo S, van Olst L, Rodriguez-Mogeda C, Kamermans A, van der Pol SMA, Rodríguez E, Kooij G, de Vries HE, van der Pol SM. Single-cell profiling reveals periventricular cd56bright nk cell accumulation in multiple sclerosis. eLife. 2022;11:11(e73849. doi:10.7554/eLife.73849.
  • Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD, Levenson RM, Lowe JB, Liu SD, Zhao S, et al. Multiplexed ion beam imaging of human breast tumors. Nat Med. 2014;20(4):436–42. doi:10.1038/nm.3488.
  • Keren L, Bosse M, Marquez D, Angoshtari R, Jain S, Varma S, Yang S-R, Kurian A, Van Valen D, West R, et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell. 2018;174(6):1373–87.e1319. doi:10.1016/j.cell.2018.08.039.
  • Patwa A, Yamashita R, Long J, Risom T, Angelo M, Keren L, Rubin DL. Multiplexed imaging analysis of the tumor-immune microenvironment reveals predictors of outcome in triple-negative breast cancer. Commun Biol. 2021;4(1):852. doi:10.1038/s42003-021-02361-1.
  • Park JJ, Lee KAV, Lam SZ, Moon KS, Fang Z, Chen S. Machine learning identifies t cell receptor repertoire signatures associated with COVID-19 severity. Commun Biol. 2023;6(1):76. doi:10.1038/s42003-023-04447-4.
  • Heffernan R, Paliwal K, Lyons J, Dehzangi A, Sharma A, Wang J, Sattar A, Yang Y, Zhou Y. Improving prediction of secondary structure, local backbone angles and solvent accessible surface area of proteins by iterative deep learning. Sci Rep. 2015;5(1):11476. doi:10.1038/srep11476.
  • Garg M, Li X, Moreno P, Papatheodorou I, Shu Y, Brazma A, Miao Z. Meta-analysis of COVID-19 single-cell studies confirms eight key immune responses. Sci Rep. 2021;11(1):20833. doi:10.1038/s41598-021-00121-z.
  • Stephenson E, Reynolds G, Botting RA, Calero-Nieto FJ, Morgan MD, Tuong ZK, Bach K, Sungnak W, Worlock KB, Yoshida M, et al. Single-cell multi-omics analysis of the immune response in covid-19. Nat Med. 2021;27(5):904–16. doi:10.1038/s41591-021-01329-2.
  • Metcalf TU, Wilkinson PA, Cameron MJ, Ghneim K, Chiang C, Wertheimer AM, Hiscott JB, Nikolich-Zugich J, Haddad EK. Human monocyte subsets are transcriptionally and functionally altered in aging in response to pattern recognition receptor agonists. J Immunol. 2017;199(4):1405–17. doi:10.4049/jimmunol.1700148.
  • Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10. doi:10.1093/nar/30.1.207.
  • Burley SK, Berman HM, Bhikadiya C, Bi C, Chen L, Costanzo LD, Christie C, Duarte JM, Dutta S, Feng Z. Ww PDBc. Protein data bank: the single global archive for 3d macromolecular structure data. Nucleic Acids Res. 2019;47(D1):D520–D8. doi:10.1093/nar/gky949.
  • Van Tilbeurgh M, Maisonnasse P, Palgen J-L, Tolazzi M, Aldon Y, Dereuddre-Bosquet N, Cavarelli M, Beignon A-S, Marcos-Lopez E, Gallouet A-S, et al. Innate cell markers that predict anti-hiv neutralizing antibody titers in vaccinated macaques. Cell Rep Med. 2022;3(10):100751. doi:10.1016/j.xcrm.2022.100751.
  • Querec TD, Akondy RS, Lee EK, Cao W, Nakaya HI, Teuwen D, Pirani A, Gernert K, Deng J, Marzolf B, et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol. 2009;10(1):116–25. doi:10.1038/ni.1688.
  • Fourati S, Tomalin LE, Mulè MP, Chawla DG, Gerritsen B, Rychkov D, Henrich E, Miller HER, Hagan T, Diray-Arce J, et al. Pan-vaccine analysis reveals innate immune endotypes predictive of antibody responses to vaccination. Nat Immunol. 2022;23(12):1777–87. doi:10.1038/s41590-022-01329-5.
  • Pedroza-Pacheco I, McMichael AJ. Immune signature atlas of vaccines: learning from the good responders. Nat Immunol. 2022;23(12):1654–6. doi:10.1038/s41590-022-01361-5.
  • Goodwin K, Viboud C, Simonsen L. Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine. 2006;24(8):1159–69. doi:10.1016/j.vaccine.2005.08.105.
  • Chambers C, Skowronski DM, Rose C, Serres GD, Winter A-L, Dickinson JA, Jassem A, Gubbay JB, Fonseca K, Drews SJ, et al. Should sex be considered an effect modifier in the evaluation of influenza vaccine effectiveness? Open Forum Infect Dis. 2018;5(9):ofy211. doi:10.1093/ofid/ofy211.
  • Kurupati R, Kossenkov A, Haut L, Kannan S, Xiang Z, Li Y, Doyle S, Liu Q, Schmader K, Showe L, et al. Race-related differences in antibody responses to the inactivated influenza vaccine are linked to distinct pre-vaccination gene expression profiles in blood. Oncotarget. 2016;7:1949–2553. (Electronic).
  • Fourati S, Cristescu R, Loboda A, Talla A, Filali A, Railkar R, Schaeffer AK, Favre D, Gagnon D, Peretz Y, et al. Pre-vaccination inflammation and b-cell signalling predict age-related hyporesponse to hepatitis b vaccination. Nat Commun. 2016;7(1):10369. doi:10.1038/ncomms10369.
  • Nakaya HI, Hagan T, Duraisingham SS, Lee EK, Kwissa M, Rouphael N, Frasca D, Gersten M, Mehta AK, Gaujoux R, et al. Systems analysis of immunity to influenza vaccination across multiple years and in diverse populations reveals shared molecular signatures. Immunity. 2015;43:1097–4180. (Electronic).
  • Gaucher D, Therrien R, Kettaf N, Angermann BR, Boucher G, Filali-Mouhim A, Moser JM, Mehta RS, Drake DR III, Castro E, et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J Exp Med. 2008;205(13):3119–31. doi:10.1084/jem.20082292.
  • Arunachalam PS, Scott MKD, Hagan T, Li C, Feng Y, Wimmers F, Grigoryan L, Trisal M, Edara VV, Lai L, et al. Systems vaccinology of the bnt162b2 mRNA vaccine in humans. Nature. 2021;596(7872):410–6. doi:10.1038/s41586-021-03791-x.
  • Tsang JS, Schwartzberg PL, Kotliarov Y, Biancotto A, Xie Z, Germain RN, Wang E, Olnes MJ, Narayanan M, Golding H, et al. Global analyses of human immune variation reveal baseline predictors of postvaccination responses. Cell. 2014;157:1097–4172. (Electronic).
  • Bucasas KL, Franco Lm Fau - Shaw CA, Shaw Ca Fau - Bray MS, Bray Ms Fau - Wells JM, Wells Jm Fau - Niño D, Niño D, Fau-Arden N, Arden N, Fau - Quarles JM, Quarles J, et al. Early patterns of gene expression correlate with the humoral immune response to influenza vaccination in humans. J Infect Dis. 2011;203:1537–6613. (Electronic).
  • Cao RG, Suarez NM, Obermoser G, Lopez SMC, Flano E, Mertz SE, Albrecht RA, García-Sastre A, Mejias A, Xu H, et al. Differences in antibody responses between trivalent inactivated influenza vaccine and live attenuated influenza vaccine correlate with the kinetics and magnitude of interferon signaling in children. J Infect Dis. 2014;210(2):224–33. doi:10.1093/infdis/jiu079.
  • Franco LM, Bucasas KL, Wells JM, Niño D, Wang X, Zapata GE, Arden N, Renwick A, Yu P, Quarles JM, et al. Integrative genomic analysis of the human immune response to influenza vaccination. ELife. 2013;2:e00299. doi:10.7554/eLife.00299.
  • Furman D, Jojic V, Kidd B, Shen-Orr S, Price J, Jarrell J, Tse T, Huang H, Lund P, Maecker HT, et al. Apoptosis and other immune biomarkers predict influenza vaccine responsiveness. Mol Syst Biol. 2013;9(1):659. doi:10.1038/msb.2013.15.
  • Nakaya HI, Wrammert J, Lee EK, Racioppi L, Marie-Kunze S, Haining WN, Means AR, Kasturi SP, Khan N, Li G-M, et al. Systems biology of vaccination for seasonal influenza in humans. Nat Immunol. 2011;12(8):786–95. doi:10.1038/ni.2067.
  • Boraschi D, Italiani P. Immunosenescence and vaccine failure in the elderly: strategies for improving response. Immunol Lett. 2014;162(1, Part B):346–53. doi:10.1016/j.imlet.2014.06.006.
  • Pilishvili T, Gierke R, Fleming-Dutra KE, Farrar JL, Mohr NM, Talan DA, Krishnadasan A, Harland KK, Smithline HA, Hou PC, et al. Effectiveness of mRNA COVID-19 vaccine among US Health care personnel. N Engl J Med. 2021;385(25):e90. doi:10.1056/NEJMoa2106599.
  • Lin D-Y, Gu Y, Wheeler B, Young H, Holloway S, Sunny S-K, Moore Z, Zeng D. Effectiveness of COVID-19 vaccines over a 9-month period in north carolina. N Engl J Med. 2022;386(10):933–41. doi:10.1056/NEJMoa2117128.
  • Rosenberg ES, Dorabawila V, Easton D, Bauer UE, Kumar J, Hoen R, Hoefer D, Wu M, Lutterloh E, Conroy MB, et al. Covid-19 vaccine effectiveness in new york state. N Engl J Med. 2021;386(2):116–27. doi:10.1056/NEJMoa2116063.
  • Tartof SY, Slezak JM, Fischer H, Hong V, Ackerson BK, Ranasinghe ON, Frankland TB, Ogun OA, Zamparo JM, Gray S, et al. Effectiveness of mRNA bnt162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet. 2021;398(10309):1407–16. doi:10.1016/S0140-6736(21)02183-8.
  • Orchard S, Kerrien S, Abbani S, Aranda B, Bhate J, Bidwell S, Bridge A, Briganti L, Brinkman FSL, Cesareni G, et al. Protein interaction data curation: the international molecular exchange (imex) consortium. Nat Methods. 2012;9(4):345–50. doi:10.1038/nmeth.1931.
  • Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, Georgescu C, Romero R. A systems biology approach for pathway level analysis. Genome Res. 2007;17(10):1537–45. doi:10.1101/gr.6202607.
  • Lynn DJ, Winsor GL, Chan C, Richard N, Laird MR, Barsky A, Gardy JL, Roche FM, Chan THW, Shah N, et al. Innatedb: facilitating systems-level analyses of the mammalian innate immune response. Mol Syst Biol. 2008;4(1):218. doi:10.1038/msb.2008.55.
  • Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, Winsor GL, Hancock REW, Brinkman FSL, Lynn DJ. Innatedb: systems biology of innate immunity and beyond—recent updates and continuing curation. Nucleic Acids Res. 2013;41(D1):D1228–D33. doi:10.1093/nar/gks1147.
  • Bader GD, Cary MP, Sander C. Pathguide: a pathway resource list. Nucleic Acids Res. 2006;34(suppl_1):D504–D6. doi:10.1093/nar/gkj126.
  • Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M, Friedrichsen A, Huntley R, et al. Intact—open source resource for molecular interaction data. Nucleic Acids Res. 2007;35(suppl_1):D561–D5. doi:10.1093/nar/gkl958.
  • Chatr-Aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G. Mint: the molecular interaction database. Nucleic Acids Res. 2007;35(suppl_1):D572–D4. doi:10.1093/nar/gkl950.
  • Stark C, Breitkreutz B-J, Chatr-Aryamontri A, Boucher L, Oughtred R, Livstone MS, Nixon J, Van Auken K, Wang X, Shi X, et al. The biogrid interaction database: 2011 update. Nucleic Acids Res. 2011;39(suppl_1):D698–D704. doi:10.1093/nar/gkq1116.
  • Oda K, Kitano H. A comprehensive map of the toll-like receptor signaling network. Mol Syst Biol. 2006;2(1):2006.0015. doi:10.1038/msb4100057.
  • Su AI, Pezacki JP, Wodicka L, Brideau AD, Supekova L, Thimme R, Wieland S, Bukh J, Purcell RH, Schultz PG, et al. Genomic analysis of the host response to hepatitis c virus infection. Proc Natl Acad Sci USA. 2002;99(24):15669–74. doi:10.1073/pnas.202608199.
  • Bigger Catherine B, Brasky Kathleen M, Lanford Robert E. DNA microarray analysis of chimpanzee liver during acute resolving hepatitis c virus infection. J Virol. 2001;75(15):7059–66. doi:10.1128/JVI.75.15.7059-7066.2001.
  • Brandes M, Klauschen F, Kuchen S, Germain Ronald N. A systems analysis identifies a feedforward inflammatory circuit leading to lethal influenza infection. Cell. 2013;154(1):197–212. doi:10.1016/j.cell.2013.06.013.
  • Askovich PS, Sanders CJ, Rosenberger CM, Diercks AH, Dash P, Navarro G, Vogel P, Doherty PC, Thomas PG, Aderem A, et al. Differential host response, rather than early viral replication efficiency, correlates with pathogenicity caused by influenza viruses. PloS One. 2013;8(9):e74863. doi:10.1371/journal.pone.0074863.
  • Cheung CY, Chan EY, Krasnoselsky A, Purdy D, Navare AT, Bryan JT, Leung CKL, Hui KPY, Peiris JSM, Katze MG. H5n1 virus causes significant perturbations in host proteome very early in influenza virus-infected primary human monocyte-derived macrophages. J Infect Dis. 2012;206(5):640–5. doi:10.1093/infdis/jis423.
  • Lietzén N, Öhman T, Rintahaka J, Julkunen I, Aittokallio T, Matikainen S, Nyman TA, Iwasaki A. Quantitative subcellular proteome and secretome profiling of influenza a virus-infected human primary macrophages. PLoS Pathog. 2011;7(5):e1001340. doi:10.1371/journal.ppat.1001340.
  • Li Y, Chan Eric Y, Li J, Ni C, Peng X, Rosenzweig E, Tumpey Terrence M, Katze Michael G. MicroRNA expression and virulence in pandemic influenza virus-infected mice. J Virol. 2010;84(6):3023–32. doi:10.1128/JVI.02203-09.
  • Bakker OB, Aguirre-Gamboa R, Sanna S, Oosting M, Smeekens SP, Jaeger M, Zorro M, Võsa U, Withoff S, Netea-Maier RT, et al. Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses. Nat Immunol. 2018;19(7):776–86. doi:10.1038/s41590-018-0121-3.
  • Bengsch B, Ohtani T, Herati RS, Bovenschen N, Chang K-M, Wherry EJ. Deep immune profiling by mass cytometry links human t and nk cell differentiation and cytotoxic molecule expression patterns. J Immunol Methods. 2018;453:453(3–10. doi:10.1016/j.jim.2017.03.009.
  • Voge NV, Perera R, Mahapatra S, Gresh L, Balmaseda A, Loroño-Pino MA, Hopf-Jannasch AS, Belisle JT, Harris E, Blair CD, et al. Metabolomics-based discovery of small molecule biomarkers in serum associated with dengue virus infections and disease outcomes. PLoS Negl Trop Dis. 2016;10(2):e0004449. doi:10.1371/journal.pntd.0004449.
  • Schreiber F, Lynn DJ, Houston A, Peters J, Mwafulirwa G, Finlay BB, Brinkman FSL, Hancock REW, Heyderman RS, Dougan G, et al. The human transcriptome during nontyphoid salmonella and hiv coinfection reveals attenuated nfκb-mediated inflammation and persistent cell cycle disruption. J Infect Dis. 2011;204(8):1237–45. doi:10.1093/infdis/jir512.
  • Scott MG, Dullaghan E, Mookherjee N, Glavas N, Waldbrook M, Thompson A, Wang A, Lee K, Doria S, Hamill P, et al. An anti-infective peptide that selectively modulates the innate immune response. Nat Biotechnol. 2007;25(4):465–72. doi:10.1038/nbt1288.
  • Stanley Langevin MP, Smith E, Morrison J, Bent Z, Green R, Barker K, Solberg O, Gillet Y, Javouhey E, Lina B, et al. Early nasopharyngeal microbial signature associated with severe influenza in children: a retrospective pilot study. J Gener Virol. 2017;98(10):2425–37. doi:10.1099/jgv.0.000920.
  • Shen-Orr Shai S, Furman D, Kidd Brian A, Hadad F, Lovelace P, Huang Y-W, Rosenberg-Hasson Y, Mackey S, Grisar Fatemeh AG, Pickman Y, et al. Defective signaling in the jak-stat pathway tracks with chronic inflammation and cardiovascular risk in aging humans. Cell Systems. 2016;3(4):374–84.e374. doi:10.1016/j.cels.2016.09.009.
  • Furman D, Chang J, Lartigue L, Bolen CR, Haddad F, Gaudilliere B, Ganio EA, Fragiadakis GK, Spitzer MH, Douchet I, et al. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat Med. 2017;23(2):174–84. doi:10.1038/nm.4267.
  • Metcalf TU, Cubas RA, Ghneim K, Cartwright MJ, Grevenynghe JV, Richner JM, Olagnier DP, Wilkinson PA, Cameron MJ, Park BS, et al. Global analyses revealed age-related alterations in innate immune responses after stimulation of pathogen recognition receptors. Aging Cell. 2015;14(3):421–32. doi:10.1111/acel.12320.
  • Connors J, Taramangalam B, Cusimano G, Bell MR, Matt SM, Runner K, Gaskill PJ, DeFilippis V, Nikolich-Žugich J, Kutzler MA, et al. Aging alters antiviral signaling pathways resulting in functional impairment in innate immunity in response to pattern recognition receptor agonists. GeroScience. 2022;44(5):2555–72. doi:10.1007/s11357-022-00612-5.