1,050
Views
1
CrossRef citations to date
0
Altmetric
Immunology

Analysis of global research hotspots and trends in immune cells in intervertebral disc degeneration: A bibliometric study

, , , , , & show all
Article: 2274220 | Received 06 Jul 2023, Accepted 19 Oct 2023, Published online: 09 Nov 2023

References

  • Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392:1789–22. doi:10.1016/S0140-6736(18)32279-7.
  • Xin J, Wang Y, Zheng Z, Wang S, Na S, Zhang S. Treatment of intervertebral disc degeneration. Orthop Surg. 2022;14(7):1271–80. doi:10.1111/os.13254.
  • Walker BF. The prevalence of low back pain: a systematic review of the literature from 1966 to 1998. J Spinal Disord. 2000;13(3):205–17. doi:10.1097/00002517-200006000-00003.
  • Endler P, Ekman P, Berglund I, Möller H, Gerdhem P. Long-term outcome of fusion for degenerative disc disease in the lumbar spine. Bone Joint J. 2019;101-b:1526–33. doi:10.1302/0301-620X.101B12.BJJ-2019-0427.R1.
  • Wang F, Cai F, Shi R, Wang XH, Wu XT. Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration. Osteoarthr Cartil. 2016;24(3):398–408. doi:10.1016/j.joca.2015.09.019.
  • Song C, Zhou Y, Cheng K, Liu F, Cai W, Zhou D, Chen R, Shi H, Fu Z, Chen J, et al. Cellular senescence – molecular mechanisms of intervertebral disc degeneration from an immune perspective. Biomed Pharmacother = Biomed Pharmacotherapie. 2023;162:114711. doi:10.1016/j.biopha.2023.114711.
  • Gorth DJ, Ottone OK, Shapiro IM, Risbud MV. Differential effect of long-term systemic exposure of TNFα on health of the annulus fibrosus and nucleus pulposus of the intervertebral disc. J Bone Miner Res. 2020;35:725–37. doi:10.1002/jbmr.3931.
  • Long L, Huang X, Yu S, Fan J, Li X, Xu R, Zhang, X, Huang, H. The research status and prospects of MUC1 in immunology. Hum Vaccin Immunother. 2023;19:2172278. doi:10.1080/21645515.2023.2172278.
  • Xu P, Shao RR, He Y. Bibliometric analysis of recent research on the association between TRPV1 and inflammation. Channels (Austin, Tex). 2023;17(1):2189038. doi:10.1080/19336950.2023.2189038.
  • Liu Q, Liu Z, Huang B, Teng Y, Li M, Peng S, Guo H, Wang M, Liang J, Zhang Y, et al. Global trends in poliomyelitis research over the past 20 years: a bibliometric analysis. Hum Vaccin Immunother. 2023;19(1):2173905. doi:10.1080/21645515.2023.2173905.
  • Wei N, Hu Y, Liu G, Li S, Yuan G, Shou X, Zhang X, Shi J, Zhai H. A bibliometric analysis of familial hypercholesterolemia from 2011 to 2021. Curr Probl Cardiol. 2023;48:101151. doi:10.1016/j.cpcardiol.2022.101151.
  • Wang N, Chen S, Zhang X, Xi Z, Fang X, Xue C, Li J, Xie L. Global research status and hot trends in stem cells therapy for intervertebral disc degeneration: a bibliometric and clinical study analysis. Front Pharmacol. 2022;13:873177. doi:10.3389/fphar.2022.873177.
  • Gertzbein SD. Degenerative disk disease of the lumbar spine: immunological implications. Clin Orthop Relat R. 1977;129:68–71. doi:10.1097/00003086-197711000-00007.
  • Roberts S, Evans H, Trivedi J, Menage J. Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am. 2006;88A:10–14. doi:10.2106/00004623-200604002-00003.
  • Kauppila LI. Ingrowth of blood vessels in disc degeneration. Angiographic and histological studies of cadaveric spines. J Bone Joint Surg Am. 1995;77(1):26–31. doi:10.2106/00004623-199501000-00004.
  • Di Martino A, Merlini L, Faldini C. Autoimmunity in intervertebral disc herniation: from bench to bedside. Expert Opin Ther Targets. 2013;17(12):1461–70. doi:10.1517/14728222.2013.834330.
  • Sun Z, Liu B, Luo ZJ. The immune privilege of the intervertebral disc: implications for intervertebral disc degeneration treatment. Int J Med Sci. 2020;17(5):685–92. doi:10.7150/ijms.42238.
  • Wang HQ, Samartzis D. Clarifying the nomenclature of intervertebral disc degeneration and displacement: from bench to bedside. Int J Clin Exp Pathol. 2014;7:1293–8.
  • Takada T, Nishida K, Doita M, Kurosaka M. Fas ligand exists on intervertebral disc cells: a potential molecular mechanism for immune privilege of the disc. Spine. 2002;27(14):1526–30. doi:10.1097/00007632-200207150-00009.
  • Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol. 2014;10(1):44–56. doi:10.1038/nrrheum.2013.160.
  • Binch ALA, Cole AA, Breakwell LM, Michael ALR, Chiverton N, Cross AK, Le Maitre CL. Expression and regulation of neurotrophic and angiogenic factors during human intervertebral disc degeneration. Arthritis Res Ther. 2014;16. doi:10.1186/s13075-014-0416-1.
  • Wang YJ, Che MX, Xin JG, Zheng Z, Li JB, Zhang SK. The role of IL-1β and TNF-α in intervertebral disc degeneration. Biomed Pharmacother. 2020;131:110660. doi:10.1016/j.biopha.2020.110660.
  • Silva AJ, Ferreira JR, Cunha C, Corte-Real JV, Bessa-Goncalves M, Barbosa MA, Santos, SG, Gonçalves, RM. Macrophages down-regulate gene expression of intervertebral disc degenerative markers under a pro-inflammatory microenvironment. Front Immunol. 2019;10. doi:10.3389/fimmu.2019.01508.
  • Francisco V, Pino J, Gonzalez-Gay MA, Lago F, Karppinen J, Tervonen O, Mobasheri A, Gualillo O. A new immunometabolic perspective of intervertebral disc degeneration. Nat Rev Rheumatol. 2022;18:47–60. doi:10.1038/s41584-021-00713-z.
  • Norbertczak HT, Ingham E, Fermor HL, Wilcox RK. Decellularized intervertebral discs: a potential replacement for degenerate human discs. Tissue Eng Part C. 2020;26:565–76. doi:10.1089/ten.tec.2020.0104.
  • Martins R, Carlos AR, Braza F, Thompson JA, Bastos-Amador P, Ramos S, Soares, MP. Disease tolerance as an inherent component of immunity. Annu Rev Immunol. 2019;37:405–37. doi:10.1146/annurev-immunol-042718-041739.
  • FBA Y, Lyu FJ, Wang H, Zheng ZM. The involvement of immune system in intervertebral disc herniation and degeneration. Jor Spine. 2022;5. doi:10.1002/jsp2.1196.
  • Wang LB, He T, Liu JK, Tai JJ, Wang B, Zhang LY, Quan Z. Revealing the immune infiltration landscape and identifying diagnostic biomarkers for lumbar disc herniation. Front Immunol. 2021;12. doi:10.3389/fimmu.2021.666355.
  • Zhang YX, Zhang JH, Sun ZY, Wang H, Ning RN, Xu LY, Zhao Y, Yang K, Xi X, Tian J, et al. MAPK8 and CAPN1 as potential biomarkers of intervertebral disc degeneration overlapping immune infiltration, autophagy, and ceRNA. Front Immunol. 2023;14. doi:10.3389/fimmu.2023.1188774.
  • Li WH, Zhao YJ, Wang YC, He ZJ, Zhang LY, Yuan B, Li C, Luo Z, Gao B, Yan M, et al. Deciphering the sequential changes of monocytes/macrophages in the progression of IDD with longitudinal approach using single-cell transcriptome. Front Immunol. 2023;14. doi:10.3389/fimmu.2023.1090637.
  • Li XC, Luo SJ, Fan W, Zhou TL, Tan DQ, Tan RX, Xian Q-Z, Li J, Huang C-M, Wang M-S, et al. Macrophage polarization regulates intervertebral disc degeneration by modulating cell proliferation, inflammation mediator secretion, and extracellular matrix metabolism. Front Immunol. 2022;13. doi:10.3389/fimmu.2022.922173.
  • Zhang S, Wang P, Hu BW, Liu WJ, Lv X, Chen SF, Shao Z. HSP90 inhibitor 17-AAG attenuates nucleus pulposus inflammation and catabolism induced by M1-polarized macrophages. Front Cell Dev Biol. 2022;9. doi:10.3389/fcell.2021.796974.
  • Domoto R, Sekiguchi F, Tsubota M, Kawabata A. Macrophage as a peripheral pain regulator. Cells. 2021;10(8). doi:10.3390/cells10081881.
  • Zhao X, Sun Z, Xu BC, Duan W, Chang L, Lai KW, Ye Z. Degenerated nucleus pulposus cells derived exosome carrying miR-27a-3p aggravates intervertebral disc degeneration by inducing M1 polarization of macrophages. J Nanobiotechnology. 2023;21. doi:10.1186/s12951-023-02075-y.
  • Hwang MH, Son HG, Kim J, Choi H. In vitro model of distinct catabolic and inflammatory response patterns of endothelial cells to intervertebral disc cell degeneration. Sci Rep. 2020;10(1). doi:10.1038/s41598-020-77785-6.
  • Wiet MG, Piscioneri A, Khan SN, Ballinger MN, Hoyland JA, Purmessur D. Mast cell-intervertebral disc cell interactions regulate inflammation, catabolism and angiogenesis in discogenic back pain. Sci Rep. 2017;7(1). doi:10.1038/s41598-017-12666-z.
  • Tu J, Li WT, Hansbro PM, Yan Q, Bai XP, Donovan C, Kim RY, Galvao I, Das A, Yang C, et al. Smoking and tetramer tryptase accelerate intervertebral disc degeneration by inducing METTL14-mediated DIXDC1 m6 modification. Mol Ther. 2023;31(8):2524–42. doi:10.1016/j.ymthe.2023.06.010.
  • Gorth DJ, Shapiro IM, Risbud MV. Transgenic mice overexpressing human TNF-alpha experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Disease. 2018;10. doi:10.1038/s41419-018-1246-x.
  • Yao Y, Xue HW, Chen XD, Cao Y, Yu J, Jiang XJ, Zhang F. Polarization of helper T lymphocytes may be involved in the pathogenesis of lumbar disc herniation. Iran J Allergy Asthma Immunol. 2017;16:347–57.
  • Hou KD, Wang DG, Sagaram M, An HS, Chee A. Anti-inflammatory effects of interleukin-4 on intervertebral disc cells. Spine J. 2020;20:60–8. doi:10.1016/j.spinee.2019.06.025.
  • Worbs T, Hammerschmidt SI, Forster R. Dendritic cell migration in health and disease. Nat Rev Immunol. 2017;17(1):30–48. doi:10.1038/nri.2016.116.
  • Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17(xSuppl 4):467–79. doi:10.1007/s00586-008-0745-3.
  • Sakai D, Mochida J, Yamamoto Y, Nomura T, Okuma M, Nishimura K, Nakai T, Ando K, Hotta T. Transplantation of mesenchymal stem cells embedded in Atelocollagen® gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials. 2003;24:3531–41. doi:10.1016/S0142-9612(03)00222-9.
  • Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26(17):1873–8. doi:10.1097/00007632-200109010-00011.
  • Le Maitre CL, Freemont AJ, Hoyland JA. The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther. 2005;7(4):R732–45. doi:10.1186/ar1732.
  • Xu H, Li J, Fei Q, Jiang L. Contribution of immune cells to intervertebral disc degeneration and the potential of immunotherapy. Connect Tissue Res. 2023;1–15. doi:10.1080/03008207.2023.2212051.
  • Feng P, Che Y, Gao C, Zhu L, Gao J, Vo NV. Immune exposure: how macrophages interact with the nucleus pulposus. Front Immunol. 2023;14:1155746. doi:10.3389/fimmu.2023.1155746.
  • Xu S, Fu H, Weng S, Gu X, Li J. Derivation and comprehensive analysis of ageing-related genes in intervertebral disc degeneration for prediction and immunology. Mech Ageing Dev. 2023;211:111794. doi:10.1016/j.mad.2023.111794.
  • Guo W, Mu K, Li WS, Gao SX, Wang LF, Li XM, Zhao J-Y. Identification of mitochondria-related key gene and association with immune cells infiltration in intervertebral disc degeneration. Front Genet. 2023;14:1135767. doi:10.3389/fgene.2023.1135767.
  • Li W, Zhao Y, Wang Y, He Z, Zhang L, Yuan B, Li C, Luo Z, Gao B, Yan M, et al. Deciphering the sequential changes of monocytes/macrophages in the progression of IDD with longitudinal approach using single-cell transcriptome. Front Immunol. 2023;14:1090637. doi:10.3389/fimmu.2023.1090637.
  • Yan M, Song Z, Kou H, Shang G, Shang C, Chen X, Ji Y, Bao D, Cheng T, Li J, et al. New progress in basic research of macrophages in the pathogenesis and treatment of low back pain. Front Cell Dev Biol. 2022;10:866857. doi:10.3389/fcell.2022.866857.
  • Zhang S, Wang P, Hu B, Lv X, Liu W, Chen S, Shao Z. Inhibiting heat shock protein 90 attenuates nucleus pulposus fibrosis and pathologic angiogenesis induced by macrophages via down-regulating cell migration–inducing protein. Am J Pathol. 2023;193:960–76. doi:10.1016/j.ajpath.2023.03.014.
  • Ribeiro-Machado C, Santos SG, Amaral IA, Caldeira J, Pereira P, Barbosa MA, Cunha C. Macrophage-based therapy for intervertebral disc herniation: preclinical proof-of-concept. Npj Regen Med. 2023;8. doi:10.1038/s41536-023-00309-z.
  • Gao XW, Hu HL, Xie MH, Tang CX, Ou J, Lu ZH. CX3CL1/CX3CR1 axis alleviates inflammation and apoptosis in human nucleus pulposus cells via M2 macrophage polarization. Exp Ther Med. 2023;26(1):359. doi:10.3892/etm.2023.12058.
  • Qin T, Yan J, Li S, Lin X, Wu J, Huang Z, Zhang C, Zhang Y, Deng Z, Xiao D, et al. MicroRNA-155 suppressed cholesterol-induced matrix degradation, pyroptosis and apoptosis by targeting RORα in nucleus pulposus cells. Cell Signal. 2023;107:110678. doi:10.1016/j.cellsig.2023.110678.
  • Lu P, Zheng H, Meng H, Liu C, Duan L, Zhang J, Zhang Z, Gao J, Zhang Y, Sun T, et al. Mitochondrial DNA induces nucleus pulposus cell pyroptosis via the TLR9-NF-κB-NLRP3 axis. J Transl Med. 2023;21(1):389. doi:10.1186/s12967-023-04266-5.
  • Xiong X, Wu Y, Long H, Liang T, Liang W, Huang X, Li G. Endoplasmic reticulum stress involves the high glucose-induced nucleus pulposus cell pyroptosis. Acta Biochim Pol. 2023;70:371–7. doi:10.18388/abp.2020_6602.
  • Chao-Yang G, Peng C, Hai-Hong Z. Roles of NLRP3 inflammasome in intervertebral disc degeneration. Osteoarthr Cartil. 2021;29(6):793–801. doi:10.1016/j.joca.2021.02.204.
  • Li W, Ding Z, Zhang H, Shi Q, Wang D, Zhang S, Xu S, Gao B, Yan M. The roles of blood lipid-metabolism genes in immune infiltration could promote the development of IDD. Front Cell Dev Biol. 2022;10:844395. doi:10.3389/fcell.2022.844395.
  • Song C, Zhou Y, Cheng K, Liu F, Cai WY, Zhou DQ, Chen R, Shi H, Fu Z, Chen J, et al. Cellular senescence – molecular mechanisms of intervertebral disc degeneration from an immune perspective. Biomed Pharmacother. 2023;162:114711. doi:10.1016/j.biopha.2023.114711.
  • Li ZC, An F. ERBB2-PTGS2 axis promotes intervertebral disc degeneration by regulating senescence of nucleus pulposus cells. BMC Musculoskelet Disord. 2023;24(1). doi:10.1186/s12891-023-06625-1.
  • Peng YZ, Chen XZ, Liu S, Wu W, Shu HY, Tian S, Xiao Y, Li K, Wang B, Lin H, et al. Extracellular vesicle-conjugated functional matrix hydrogels prevent senescence by exosomal miR-3594-5p-targeted HIPK2/p53 pathway for disc regeneration. Small. 2023;19(37). doi:10.1002/smll.202206888.
  • Zhu P, Wu X, Ni L, Chen K, Dong Z, Du J, Kong F, Mao Y, Tao H, Chu M, et al. Inhibition of PP2A ameliorates intervertebral disc degeneration by reducing annulus fibrosus cells apoptosis via p38/MAPK signal pathway. Biochim Biophys Acta Mol Bas Dis. 2023;1870:166888. doi:10.1016/j.bbadis.2023.166888.
  • Wang Z, Hu XL, Wang W, Li YJ, Cui P, Wang P, Kong C, Chen X, Lu S. Understanding necroptosis and its therapeutic target for intervertebral disc degeneration. Int Immunopharmacol. 2023;121:110400. doi:10.1016/j.intimp.2023.110400.
  • Zhou KS, Ran R, Gong CY, Zhang SB, Ma CW, Lv JY, Lei Z-Y, Ren Y, Zhang H-H. Roles of pyroptosis in intervertebral disc degeneration. Pathol Res Practx. 2023;248:154685. doi:10.1016/j.prp.2023.154685.
  • Chen L, Zhu L, Shi H, Xie ZY, Jiang ZL, Xu ZY, Zhang, ZJ, Wu, XT. Endoplasmic reticulum stress-mediated autophagy alleviates lipopolysaccharide-induced nucleus pulposus cell pyroptosis by inhibiting CHOP signaling in vitro. J Biochem Mol Toxicol. 2023. doi:10.1002/jbt.23523.
  • Chen X, Wang ZH, Deng RR, Yan HJ, Liu X, Kang R. Intervertebral disc degeneration and inflammatory microenvironment: expression, pathology, and therapeutic strategies. Inflamm Res. 2023;72:1811–28. doi:10.1007/s00011-023-01784-2.
  • Ao X, Li Y, Jiang T, Li CL, Lian ZN, Wang L, Zhang Z, Huang M. Angiopoietin-2 promotes mechanical stress-induced extracellular matrix degradation in annulus fibrosus via the HIF -1α/ NF-κB signaling pathway. Orthop Surg. 2023;15:2410–22. doi:10.1111/os.13797.
  • Zhang JG, He LM, Li Q, Gao J, Zhang ER, Feng HY. EGR1 knockdown confers protection against ferroptosis and ameliorates intervertebral disc cartilage degeneration by inactivating the MAP3K14/NF-κB axis. Genomics. 2023;115:110683. doi:10.1016/j.ygeno.2023.110683.
  • Lu P, Zheng HY, Meng H, Liu C, Duan LH, Zhang JZ, Zhang Z, Gao J, Zhang Y, Sun T. Mitochondrial DNA induces nucleus pulposus cell pyroptosis via the TLR9-NF-κB-NLRP3 axis. J Transl Med. 2023;21. doi:10.1186/s12967-023-04266-5.
  • Deng ZH, Zhang YY, Zhu YX, Zhu JX, Li SX, Huang ZQ, Qin T, Wu J, Zhang C, Chen W, et al. BRD9 inhibition attenuates matrix degradation and pyroptosis in nucleus pulposus by modulating the NOX1/ROS/NF-κB axis. Inflammation. 2023;46:1002–21. doi:10.1007/s10753-023-01786-6.
  • Zheng GD, Ren JX, Shang L, Bao YJ. Role of autophagy in the pathogenesis and regulation of pain. Eur J Pharmacol. 2023;955:175859. doi:10.1016/j.ejphar.2023.175859.
  • Guo D, Yu M, Guo H, Zeng M, Shao Y, Deng W, Qin Q, Li Y, Zhang S. Panax notoginseng saponins inhibits oxidative stress- induced human nucleus pulposus cell apoptosis and delays disc degeneration in vivo and in vitro. J Ethnopharmacol. 2023;319:117166. doi:10.1016/j.jep.2023.117166.
  • Wang YD, Cheng HG, Wang T, Zhang K, Zhang YM, Kang X. Oxidative stress in intervertebral disc degeneration: molecular mechanisms, pathogenesis and treatment. Cell Prolif. 2023;56. doi:10.1111/cpr.13448.
  • Zhu J, Sun RP, Sun KQ, Yan C, Jiang JL, Kong FQ, Shi J. The deubiquitinase USP11 ameliorates intervertebral disc degeneration by regulating oxidative stress-induced ferroptosis via deubiquitinating and stabilizing Sirt3. Redox Biology. 2023;62:102707. doi:10.1016/j.redox.2023.102707.
  • Lia YJ, Kong C, Wang W, Hu F, Chen XL, Xu BS, Lu S. Screening of miR-15a-5p as a potential biomarker for intervertebral disc degeneration through RNA-sequencing. Int Immunopharmacol. 2023;123:110717. doi:10.1016/j.intimp.2023.110717.
  • Zhang C, Qiu Y, Yuan F. The long non-coding RNA maternally expressed 3-micorRNA-15a-5p axis is modulated by melatonin and prevents nucleus pulposus cell inflammation and apoptosis. Basic Clin Pharmacol Toxicol. 2023;e13939. doi:10.1111/bcpt.13939.
  • Bai X, Wang J, Ding S, Yang S, Pei B, Yao M, Zhu X, Jiang M, Zhang M, Mu W, et al. Embelin protects against apoptosis and inflammation by regulating PI3K/Akt signaling in IL-1β-stimulated human nucleus pulposus cells. Tissue Cell. 2023;82:102089. doi:10.1016/j.tice.2023.102089.
  • Chen W, Deng Z, Zhu J, Yuan L, Li S, Zhang Y, Wu J, Huang Z, Qin T, Ye W, et al. Rosuvastatin suppresses TNF-α-induced matrix catabolism, pyroptosis and senescence via the HMGB1/NF-κB signaling pathway in nucleus pulposus cells. Acta Biochim Biophys Sin (Shanghai). 2023;55:795–808. doi:10.3724/abbs.2023026.
  • Duan J, Li Z, Liu E, Long H, Chen L, Yang S. BSHXF-medicated serum combined with ADSCs regulates the TGF-β1/Smad pathway to repair oxidatively damaged NPCs and its component analysis. J Ethnopharmacol. 2023;316:116692. doi:10.1016/j.jep.2023.116692.
  • Guo D, Cheng K, Song C, Liu F, Cai W, Chen J, Mei Y, Zhou D, Gao S, Wang G, et al. Mechanisms of inhibition of nucleus pulposus cells pyroptosis through SDF1/CXCR4-NFkB-NLRP3 axis in the treatment of intervertebral disc degeneration by Duhuo Jisheng Decoction. Int Immunopharmacol. 2023;124:110844. doi:10.1016/j.intimp.2023.110844.
  • Soufi KH, Castillo JA, Rogdriguez FY, DeMesa CJ, Ebinu JO. Potential role for stem cell regenerative therapy as a treatment for degenerative disc disease and low back pain: a systematic review. Int J Mol Sci. 2023;24(10):24. doi:10.3390/ijms24108893.
  • Traggiai E, Volpi S, Schena F, Gattorno M, Ferlito F, Moretta L, Martini A. Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells. 2008;26:562–9. doi:10.1634/stemcells.2007-0528.
  • Ghannam S, Pene J, Torcy-Moquet G, Jorgensen C, Yssel H. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol. 2010;185(1):302–12. doi:10.4049/jimmunol.0902007.
  • Liu JQ, Feng B, Xu YP, Zhu JQ, Feng XD, Chen WY, Sheng X, Shi X, Pan Q, Yu J, et al. Immunomodulatory effect of mesenchymal stem cells in chemical-induced liver injury: a high-dimensional analysis. Stem Cell Res Ther. 2019;10(1):10. doi:10.1186/s13287-019-1379-6.
  • Wang N, Chen S, Zhang XY, Xi ZP, Fang XY, Xue CY, Li J, Xie L. Global research status and hot trends in stem cells therapy for intervertebral disc degeneration: a bibliometric and clinical study analysis. Front Pharmacol. 2022;13. doi:10.3389/fphar.2022.873177.
  • Akeda K, Takegami N, Yamada J, Fujiwara T, Ohishi K, Tamaru S, Sudo A. Platelet-Rich Plasma-Releasate (PRPr) for the treatment of discogenic low back pain patients: long-term follow-up survey. Medicina (Kaunas, Lithuania). 2022;58:428. doi:10.3390/medicina58030428.
  • Kawabata S, Akeda K, Yamada J, Takegami N, Fujiwara T, Fujita N, Sudo A. Advances in platelet-rich plasma treatment for spinal diseases: a systematic review. Int J Mol Sci. 2023;24:24. doi:10.3390/ijms24087677.
  • Qian J, Wang X, Su G, Shu X, Huang Z, Jiang H, Zhu Q. Platelet-rich plasma-derived exosomes attenuate intervertebral disc degeneration by promoting NLRP3 autophagic degradation in macrophages. Int Immunopharmacol. 2022;110:108962. doi:10.1016/j.intimp.2022.108962.
  • Yahia S, Khalil IA, El-Sherbiny IM. Fortified gelatin-based hydrogel scaffold with simvastatin-mixed nanomicelles and platelet rich plasma as a promising bioimplant for tissue regeneration. Int J Biol Macromol. 2023;225:730–44. doi:10.1016/j.ijbiomac.2022.11.136.
  • Yang LT, Bhujel B, Hou YN, Luo JF, An SB, Han IB, Lee K-B. Effective modulation of inflammation and oxidative stress for enhanced regeneration of intervertebral discs using 3D porous hybrid protein nanoscaffold. Adv Mater. 2023;35. doi:10.1002/adma.202370295.
  • Snuggs JW, Emanuel KS, Rustenburg C, Janani R, Partridge S, Sammon C, Smit TH, Le Maitre CL. Injectable biomaterial induces regeneration of the intervertebral disc in a caprine loaded disc culture model. Biomater Sci. 2023;11:4630–43. doi:10.1039/D3BM00150D.
  • Conley BM, Yang L, Bhujel B, Luo J, Han I, Lee KB. Development of a nanohybrid peptide hydrogel for enhanced intervertebral disc repair and regeneration. Acs Nano. 2023;17(4):3750–64. doi:10.1021/acsnano.2c11441.
  • Jiang Y, Wang J, Sun D, Liu Z, Qi L, Du M, Wang J, Li Y, Zhu C, Huang Y, et al. A hydrogel reservoir as a self-contained nucleus pulposus cell delivery vehicle for immunoregulation and repair of degenerated intervertebral disc. Acta Biomater. 2023;170:303–17. doi:10.1016/j.actbio.2023.08.023.
  • Cheng H, Guo Q, Zhao H, Liu K, Kang H, Gao F, Guo J, Yuan X, Hu S, Li F, et al. An injectable hydrogel scaffold loaded with dual-drug/sustained-release PLGA microspheres for the regulation of macrophage polarization in the treatment of intervertebral disc degeneration. Int J Mol Sci. 2022;24(1):24. doi:10.3390/ijms24010390.
  • Yang L, Bhujel B, Hou Y, Luo J, An SB, Han I, Lee K-B. Effective modulation of inflammation and oxidative stress for enhanced regeneration of intervertebral discs using 3D porous hybrid protein nanoscaffold. Adv Mater. 2023;35:e2303021. doi:10.1002/adma.202303021.
  • Safari J, Zarnegar Z. Advanced drug delivery systems: nanotechnology of health design a review. J Saudi Chem Soc. 2014;18(2):85–99. doi:10.1016/j.jscs.2012.12.009.
  • Liu C, Fan L, Guan M, Zheng QQ, Jin JL, Kang XC, Gao Z, Deng X, Shen Y, Chu G, et al. A redox homeostasis modulatory hydrogel with GLRX3 + extracellular vesicles attenuates disc degeneration by suppressing nucleus pulposus cell senescence. Acs Nano. 2023;17:13441–60. doi:10.1021/acsnano.3c01713.
  • Chen JX, Zhu HF, Xia JC, Zhu YT, Xia C, Hu ZH, Jin Y, Wang J, He Y, Dai J, et al. High-performance multi-dynamic bond cross-linked hydrogel with spatiotemporal siRNA delivery for gene–cell combination therapy of intervertebral disc degeneration. Adv Sci. 2023;10. doi:10.1002/advs.202206306.
  • Isa ILM, Mokhtar SA, Abbah SA, Fauzi MB, Devitt A, Pandit A. Intervertebral disc degeneration: biomaterials and tissue engineering strategies toward precision Medicine. Adv Healthcare Mater. 2022;11(13). doi:10.1002/adhm.202102530.