798
Views
1
CrossRef citations to date
0
Altmetric
Novel Vaccines

Evolution of global scientific collaboration in mRNA vaccine research: Insights from bibliometric and social network analysis (2010~2023)

, , , , , & ORCID Icon show all
Article: 2276624 | Received 03 Jul 2023, Accepted 25 Oct 2023, Published online: 14 Nov 2023

References

  • Armenteras D. Guidelines for healthy global scientific collaborations. Nat Ecol Evol. 2021;5(9):1193–23. doi:10.1038/s41559-021-01496-y.
  • Shen H, Xie J, Li J, Cheng Y. The correlation between scientific collaboration and citation count at the paper level: a meta-analysis. Scientometrics. 2021;126(4):443–70. doi:10.1007/s11192-021-03888-0.
  • Lu W, Ren Y, Huang Y, Bu Y, Zhang Y. Scientific collaboration and career stages: an ego-centric perspective. J Informetr. 2021;15(4):101207. doi:10.1016/j.joi.2021.101207.
  • Druedahl LC, Minssen T, Price WN. Collaboration in times of crisis: a study on COVID-19 vaccine R&D partnerships. Vaccine. 2021;39(42):6291–5. doi:10.1016/j.vaccine.2021.08.101.
  • Fry CV, Cai X, Zhang Y, Wagner CS. Consolidation in a crisis: patterns of international collaboration in early COVID-19 research. PloS One. 2020;15(7):e36307. doi:10.1371/journal.pone.0236307.
  • Wang J, Hong N. The COVID-19 research landscape measuring topics and collaborations using scientific literature. Medicine. 2020;99(43):e22849. doi:10.1097/MD.0000000000022849.
  • Chernysh Y, Roubik H. International collaboration in the field of environmental protection: trend analysis and COVID-19 implications. Sustain Basel. 2020;12(24):1–18. doi:10.3390/su122410384.
  • Zaer H, Fan W, Orlowski D, Glud AN, Andersen ASM, Schneider MB, Adler JR, Stroh A, Sørensen JCH. A perspective of international collaboration through Web-based telecommunication–inspired by COVID-19 crisis. Front Hum Neurosci. 2020;14:577465. doi:10.3389/fnhum.2020.577465.
  • Cordato DJJ, Shad KF, Soubra W, Beran RGG. Health research and education during and after the COVID-19 pandemic: an Australian clinician and researcher perspective. Diagnostics. 2023;13(2):289–300. doi:10.3390/diagnostics13020289.
  • Guimon J, Narula R. Ending the COVID-19 pandemic requires more international collaboration. Res Technol Manage. 2020;63(5):438–41. doi:10.1080/08956308.2020.1790239.
  • Kim K, Cho KT. A review of global collaboration on COVID-19 research during the pandemic in 2020. Sustain Basel. 2021;13(14):7618. doi:10.3390/su13147618.
  • Cai X, Fry CV, Wagner CS. International collaboration during the COVID-19 crisis: autumn 2020 developments. Scientometrics. 2021;126(4):3683–92. doi:10.1007/s11192-021-03873-7.
  • Vervoort D, Ma X, Luc JGY. COVID-19 pandemic: a time for collaboration and a unified global health front. Int J Qual Health Care. 2021;33(1):mzaa65. doi:10.1093/intqhc/mzaa065.
  • Malekpour M, Abbasi-Kangevari M, Azadnajafabad S, Ghamari S-H, Rezaei N, Rezazadeh-Khadem S, Rezaei N, Aminorroaya A, Abdolhamidi E, Mohammadi Fateh S, et al. How the scientific community responded to the COVID-19 pandemic: a subject-level time-trend bibliometric analysis. PloS One. 2021;16(9):e258064. doi:10.1371/journal.pone.0258064.
  • Thavorn J, Gowanit C, Muangsin V, Muangsin N. Collaboration network and trends of global coronavirus disease research: a scientometric analysis. IEEE Access. 2021;9:45001–16. doi:10.1109/ACCESS.2021.3066450.
  • Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. New Engl J Med. 2020;383(27):2603–15. doi:10.1056/NEJMoa2034577.
  • Hajissa K, Mussa A. Positive aspects of the mRNA platform for SARS-CoV-2 vaccines. Hum Vacc Immunother. 2021;17(8):2445–7. doi:10.1080/21645515.2021.1900713.
  • Baden LR, El HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. New Engl J Med. 2021;384(5):403–16. doi:10.1056/NEJMoa2035389.
  • Chen P, Shi X, He W, Zhong G, Tang Y, Wang H, Zhang P. mRNA vaccine-a desirable therapeutic strategy for surmounting COVID-19 pandemic. Hum Vaccin Immunother. 2022;18(1):2040330. doi:10.1080/21645515.2022.2040330.
  • Chen J, Zhang T, Lu Y, Yang X, Ouyang Z. Emerging trends of research on mRNA vaccines: a co-citation analysis. Hum Vacc Immunother. 2022;18(6):2110409. doi:10.1080/21645515.2022.2110409.
  • Kariko K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, Weissman D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16(11):1833–40. doi:10.1038/mt.2008.200.
  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949 Pt 1):1465–8. doi:10.1126/science.1690918.
  • Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–79. doi:10.1038/nrd.2017.243.
  • Sahin U, Kariko K, Tureci O. mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–80. doi:10.1038/nrd4278.
  • Pardi N, Tuyishime S, Muramatsu H, Kariko K, Mui BL, Tam YK, Madden TD, Hope MJ, Weissman D. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release. 2015;217:345–51. doi:10.1016/j.jconrel.2015.08.007.
  • Vogel AB, Lambert L, Kinnear E, Busse D, Erbar S, Reuter KC, Wicke L, Perkovic M, Beissert T, Haas H, et al. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol Ther. 2018;26(2):446–55. doi:10.1016/j.ymthe.2017.11.017.
  • Hekele A, Bertholet S, Archer J, Gibson DG, Palladino G, Brito LA, Otten GR, Brazzoli M, Buccato S, Bonci A, et al. Rapidly produced SAM ® vaccine against H7N9 influenza is immunogenic in mice. Emerg Microbes Infec. 2013;2(1):1–7. doi:10.1038/emi.2013.54.
  • Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A, Banerjee K, Cu Y, Beard CW, Brito LA, Krucker T, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci USA. 2012;109(36):14604–9. doi:10.1073/pnas.1209367109.
  • Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, McCullough MP, Chappell JD, Denison MR, Stevens LJ, et al. An mRNA vaccine against SARS-CoV-2 – preliminary report. N Engl J Med. 2020;383(20):1920–31. doi:10.1056/NEJMoa2022483.
  • Walsh EE, Frenck RW, Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Mulligan MJ, Bailey R, et al. Safety and immunogenicity of two RNA-based COVID-19 vaccine candidates. New Engl J Med. 2020;383(25):2439–50. doi:10.1056/NEJMoa2027906.
  • Abramo G, D’Angelo CA, Di Costa F. How the COVID-19 crisis shaped research collaboration behaviour. Scientometrics. 2022;127(8):5053–71. doi:10.1007/s11192-022-04450-2.
  • Li Y, Li H, Liu N, Liu X. Important institutions of inter institutional scientific collaboration networks in materials science. Scientometrics. 2018;117(1):85–103. doi:10.1007/s11192-018-2837-0.
  • Fu YC, Marques M, Tseng Y, Powell JJW, Baker DP. An evolving international research collaboration network: spatial and thematic developments in co-authored higher education research, 1998–2018. Scientometrics. 2022;127(3):1403–29. doi:10.1007/s11192-021-04200-w.
  • Aksnes DW, Piro FN, Rorstad K. Gender gaps in international research collaboration: a bibliometric approach. Scientometrics. 2019;120(2):747–74. doi:10.1007/s11192-019-03155-3.
  • Essers D, Grigoli F, Pugacheva E. Network effects and research collaborations: evidence from IMF working paper co-authorship. Scientometrics. 2022;127(12):357–68. doi:10.1007/s11192-022-04335-4.
  • Harzing A, Alakangas S. Google scholar, Scopus and the Web of science: a longitudinal and cross-disciplinary comparison. Scientometrics. 2016;106(2):787–804. doi:10.1007/s11192-015-1798-9.
  • Mongeon P, Paul-Hus A. The journal coverage of web of science and Scopus: a comparative analysis. Scientometrics. 2016;106(1):213–28. doi:10.1007/s11192-015-1765-5.
  • Niu F, Qiu J. Network structure, distribution and the growth of Chinese international research collaboration. Scientometrics. 2014;98(2):1221–33. doi:10.1007/s11192-013-1170-x.
  • Fonkou MDM, Bragazzi NL, Tsinda EK, Bouba Y, Mmbando GS, Kong JD. COVID-19 pandemic related research in Africa: bibliometric analysis of scholarly output, collaborations and scientific leadership. Int J Env Res Pub He. 2021;18(14):7273. doi:10.3390/ijerph18147273.
  • Feng X, Martynov I, Suttkus A, Lacher M, Mayer S. Publication trends and global collaborations on esophageal atresia research: a bibliometric study. Eur J Pediatr Surg. 2021;31(2):164–71. doi:10.1055/s-0040-1702223.
  • Si Y. Co-authorship in energy justice studies: assessing research collaboration through social network analysis and topic modeling. Energy Strateg Rev. 2022;41:100859. doi:10.1016/j.esr.2022.100859.
  • Planas D, Saunders N, Maes P, Guivel-Benhassine F, Planchais C, Buchrieser J, Bolland W-H, Porrot F, Staropoli I, Lemoine F, et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature. 2022;602(7898):671. doi:10.1038/s41586-021-04389-z.
  • Cao Y, Wang J, Jian F, Xiao T, Song W, Yisimayi A, Huang W, Li Q, Wang P, An R, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature. 2022;602(7898):657. doi:10.1038/s41586-021-04385-3.
  • University L. CWTS Leiden Ranking. 2023. [accessed 2023. Oct 12 Jan 1]. https://www.leidenranking.com/information/universities.
  • Opricovic S, Tzeng GH. Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur J Oper Res. 2004;156(2):445–55. doi:10.1016/S0377-2217(03)00020-1.
  • Chen CT. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Set Syst. 2000;114(1):1–9. doi:10.1016/S0165-0114(97)00377-1.
  • Shih H, Shyur H, Lee ES. An extension of TOPSIS for group decision making. Math Comput Model. 2007;45(7–8):801–13. doi:10.1016/j.mcm.2006.03.023.
  • Zhi-Hong Z, Yi Y, Jing-Nan S. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J Environ Sci. 2006;18(5):1020–3. doi:10.1016/S1001-0742(06)60032-6.
  • Meng X, Guo M, Gao Z, Kang L. Interaction between travel restriction policies and the spread of COVID-19. Transp Policy. 2023;136:209–27. doi:10.1016/j.tranpol.2023.04.002.
  • Girum T, Lentiro K, Geremew M, Migora B, Shewamare S, Shimbre MS. Optimal strategies for COVID-19 prevention from global evidence achieved through social distancing, stay at home, travel restriction and lockdown: a systematic review. Arch Public Health. 2021;79(1):1–150. doi:10.1186/s13690-021-00663-8.
  • Goncalves A, Porto BL, Rodolfo B, Faggion CM Jr, Agostini BA, Sousa-Neto MD, Moraes RR. Brazilian articles in top-tier dental journals and influence of international collaboration on citation rates. Braz Dent J. 2019;30(4):307–16. doi:10.1590/0103-6440201902826.
  • Leydesdorff L, Bornmann L, Wagner CS. The relative influences of government funding and international collaboration on citation impact. J Assoc Inf Sci Tech. 2019;70(2):198–201. doi:10.1002/asi.24109.
  • Roncati L, Roncati M. Emergency use authorization (EUA), conditional marketing authorization (CMA), and the precautionary principle at the time of COVID-19 pandemic. J Public Health Pol. 2021;42(3):518–21. doi:10.1057/s41271-021-00299-6.
  • Lamb YN. BNT162b2 mRNA COVID-19 vaccine: first approval. Drugs. 2021;81(4):495–501. doi:10.1007/s40265-021-01480-7.
  • Peng L, Renauer PA, Okten A, Fang Z, Park JJ, Zhou X, Lin Q, Dong MB, Filler R, Xiong Q, et al. Variant-specific vaccination induces systems immune responses and potent in vivo protection against SARS-CoV-2. Cell Rep Med. 2022;3(5):100634. doi:10.1016/j.xcrm.2022.100634.
  • Fang Z, Peng L, Filler R, Suzuki, K, McNamara, A, Lin, Q, Renauer, PA, Yang, L, Menasche, B, Sanchez, A, et al. Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2. Nat Commun. 2022;13(1).
  • Fang Z, Monteiro VS, Hahn AM, Grubaugh ND, Lucas C, Chen S. Bivalent mRNA vaccine booster induces robust antibody immunity against Omicron lineages BA.2, BA.2.12.1, BA.2.75 and BA.5. Cell Discov. 2022;8(1):108. doi:10.1038/s41421-022-00473-4.
  • Li M, Ren J, Si X, Sun Z, Wang P, Zhang X, Liu K, Wei B. The global mRNA vaccine patent landscape. Hum Vaccin Immunother. 2022;18(6):2095837. doi:10.1080/21645515.2022.2095837.
  • Alberer M, Gnad-Vogt U, Hong HS, Mehr KT, Backert L, Finak G, Gottardo R, Bica MA, Garofano A, Koch SD, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet. 2017;390(10101):1511–20. doi:10.1016/S0140-6736(17)31665-3.
  • Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, Bellamy D, Bibi S, Bittaye M, Clutterbuck EA, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020;396(10249):467–78. doi:10.1016/S0140-6736(20)31604-4.
  • Voysey M, Clemens S, Madhi SA, Weckx LY, Folegatti PM, Aley PK, Angus B, Baillie VL, Barnabas SL, Bhorat QE, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021;397(10269):99–111. doi:10.1016/S0140-6736(20)32661-1.
  • Wan E, Chui C, Wang Y, Ng VWS, Yan VKC, Lai FTT, Li X, Wong CKH, Chan EWY, Wong CSM, et al. Herpes zoster related hospitalization after inactivated (CoronaVac) and mRNA (BNT162b2) SARS-CoV-2 vaccination: a self-controlled case series and nested case-control study. Lancet Reg Health West Pac. 2022;21:100393. doi:10.1016/j.lanwpc.2022.100393.
  • Xiong X, Wong C, Au I, Lai FTT, Li X, Wan EYF, Chui CSL, Chan EWY, Cheng FWT, Lau KTK, et al. Safety of inactivated and mRNA COVID-19 vaccination among patients treated for hypothyroidism: a population-based cohort study. Thyroid. 2022;32(5):505–14. doi:10.1089/thy.2021.0684.
  • Lundstrom K, Barh D, Uhal BD, Takayama K, Aljabali AAA, Abd El-Aziz TM, Lal A, Redwan EM, Adadi P, Chauhan G, et al. COVID-19 vaccines and thrombosis—roadblock or dead-end street? Biomolecules. 2021;11(7):1020. doi:10.3390/biom11071020.
  • Herishanu Y, Avivi I, Aharon A, Shefer G, Levi S, Bronstein Y, Morales M, Ziv T, Shorer Arbel Y, Scarfò L, et al. Efficacy of the BNT162b2 mRNA COVID-19 vaccine in patients with chronic lymphocytic leukemia. Blood. 2021;137(23):3165–73. doi:10.1182/blood.2021011568.
  • Nakagama Y, Candray K, Kaku N, Komase Y, Rodriguez-Funes M-V, Dominguez R, Tsuchida T, Kunishima H, Nagai E, Adachi E, et al. Antibody avidity maturation following recovery from infection or the booster vaccination grants breadth of SARS-CoV-2 neutralizing capacity. J Infect Dis. 2023;227(6):780–7. doi:10.1093/infdis/jiac492.
  • Sugiyama A, Kurisu A, Nagashima S, Hando K, Saipova K, Akhmedova S, Abe K, Imada H, Hussain MRA, Ouoba S, et al. Seroepidemiological study of factors affecting anti-spike IgG antibody titers after a two-dose mRNA COVID-19 vaccination in 3744 healthy Japanese volunteers. Sci Rep-UK. 2022;12(1):16294. doi:10.1038/s41598-022-20747-x.
  • Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K, Han W, Chen Z, Tang R, Yin W, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2021;21(2):181–92. doi:10.1016/S1473-3099(20)30843-4.
  • Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020;369(6499):77–81. doi:10.1126/science.abc1932.
  • Kraemer M, Yang CH, Gutierrez B, Wu C-H, Klein B, Pigott DM, du Plessis L, Faria NR, Li R, Hanage WP, et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science. 2020;368(6490):493–7. doi:10.1126/science.abb4218.
  • ClinicalTrials. Study to describe the safety, tolerability, immunogenicity, and efficacy of RNA vaccine candidates against COVID-19 in healthy individuals. 2023 Feb 28 2020.
  • Thomas SJ, Moreira ED, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Polack FP, Zerbini C, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine through 6 months. New Engl J Med. 2021;385(19):1761–73. doi:10.1056/NEJMoa2110345.
  • Meo SA, Bukhari IA, Akram J, Meo AS, Klonoff DC. COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna vaccines. Eur Rev Med Pharmaco. 2021;25:1663–9.
  • Mlcochova P, Kemp SA, Dhar MS, Papa G, Meng B, Ferreira IATM, Datir R, Collier DA, Albecka A, Singh S, et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature. 2021;599(7883):114. doi:10.1038/s41586-021-03944-y.
  • Parreira MR, Machado KB, Logares R, Diniz-Filho JAF, Nabout JC. The roles of geographic distance and socioeconomic factors on international collaboration among ecologists. Scientometrics. 2017;113(3):1539–50. doi:10.1007/s11192-017-2502-z.
  • Petruzzelli AM. The impact of technological relatedness, prior ties, and geographical distance on university-industry collaborations: a joint-patent analysis. Technovation. 2011;31(7):309–19. doi:10.1016/j.technovation.2011.01.008.
  • Hou L, Pan Y, Zhu JJH. Impact of scientific, economic, geopolitical, and cultural factors on international research collaboration. J Informetr. 2021;15(3):101194. doi:10.1016/j.joi.2021.101194.
  • Tenzer H, Pudelko M, Harzing A. The impact of language barriers on trust formation in multinational teams. J Int Bus Stud. 2014;45(5):508–35. doi:10.1057/jibs.2013.64.
  • Hwang K. Effects of the language barrier on processes and performance of international scientific collaboration, collaborators’ participation, organizational integrity, and interorganizational relationships. Sci Commun. 2013;35(1):3–1. doi:10.1177/1075547012437442.
  • Peltokorpi V, Clausen L. Linguistic and cultural barriers to intercultural communication in foreign subsidiaries. Asian Bus Manag. 2011;10(4):509–28. doi:10.1057/abm.2011.20.
  • Yuan L, Hao Y, Li M, Bao C, Li J, Wu D. Who are the international research collaboration partners for China? A novel data perspective based on NSFC grants. Scientometrics. 2018;116(1):401–22. doi:10.1007/s11192-018-2753-3.
  • Martin-Martin A, Thelwall M, Orduna-Malea E, Lopez-Cozar ED. Google scholar, Microsoft academic, Scopus, dimensions, Web of science, and open citations’ COCI: a multidisciplinary comparison of coverage via citations. Scientometrics. 2021;126(1):871–906. doi:10.1007/s11192-020-03690-4.
  • Singh VK, Singh P, Karmakar M, Leta J, Mayr P. The journal coverage of Web of science, Scopus and dimensions: a comparative analysis. Scientometrics. 2021;126(6):213–28. doi:10.1007/s11192-021-03948-5.