1,904
Views
1
CrossRef citations to date
0
Altmetric
Immunotherapy - Cancer

Immune approaches beyond traditional immune checkpoint inhibitors for advanced renal cell carcinoma

ORCID Icon, ORCID Icon, , , , & ORCID Icon show all
Article: 2276629 | Received 05 Aug 2023, Accepted 25 Oct 2023, Published online: 10 Nov 2023

References

  • Rini BI, McDermott DF, Hammers H, Bro W, Bukowski RM, Faba B, Faba J, Figlin RA, Hutson T, Jonasch E, et al. Society for immunotherapy of cancer consensus statement on immunotherapy for the treatment of renal cell carcinoma. J Immunother Cancer. 2016;4(1):81. doi:10.1186/s40425-016-0180-7.
  • Jang A, Adler DM, Rauterkus GP, Bilen MA, Barata PC. immunotherapies in genitourinary oncology: where are we now? Where are we going? Cancers Basel. 2021;13(20):5065. doi:10.3390/cancers13205065.
  • Sharma M, Khong H, Fa’ak F, Bentebibel SE, Janssen LME, Chesson BC, Creasy CA, Forget M-A, Kahn LMS, Pazdrak B, et al. Bempegaldesleukin selectively depletes intratumoral tregs and potentiates T cell-mediated cancer therapy. Nat Commun. 2020;11(1):661. doi:10.1038/s41467-020-14471-1.
  • Tannir NM, Cho DC, Diab A, Sznol M, Bilen MA, Balar AV, Grignani G, Puente E, Tang L, Chien D, et al. Bempegaldesleukin plus nivolumab in first-line renal cell carcinoma: results from the PIVOT-02 study. J Immunother Cancer. 2022;10(4):10. doi:10.1136/jitc-2021-004419.
  • Nektar and Bristol Myers Squibb announce update on clinical development program for bempegaldesleukin (BEMPEG) in combination with opdivo (nivolumab). Bristol Myers Squibb; 2022. https://news.bms.com/news/details/2022/Nektar-and-Bristol-Myers-Squibb-Announce-Update-on-Clinical-Development-Program-for-Bempegaldesleukin-BEMPEG-in-Combination-with-Opdivo-nivolumab/default.aspx#:~:text=(PRINCETON%2C%20N.J.%2C%20%26%20SAN,nivolumab)%20in%20renal%20cell%20carcinoma%20(.
  • Bristol Myers Squibb and Nektar announce update on phase 3 PIVOT IO-001 trial evaluating bempegaldesleukin (BEMPEG) in combination with opdivo (nivolumab) in previously untreated unresectable or metastatic melanoma. Bristol Myers Squibb; 2022. https://news.bms.com/news/details/2022/Bristol-Myers-Squibb-and-Nektar-Announce-Update-on-Phase-3-PIVOT-IO-001-Trial-Evaluating-Bempegaldesleukin-BEMPEG-in-Combination-with-Opdivo-nivolumab-in-Previously-Untreated-Unresectable-or-Metastatic-Melanoma/default.aspx.
  • Voss MH, Tykodi SS, Grimm M-O, Hammers HJ, Rini BI, Tannir NM, Qureshi AH, Tsipouri V, Hodari M, Ravimohan S, et al. PIVOT IO 011: a phase 1/2 study of bempegaldesleukin (BEMPEG; NKTR-214) plus nivolumab (NIVO) and tyrosine kinase inhibitor (TKI) versus NIVO and TKI alone in patients (pts) with previously untreated advanced or metastatic renal cell carcinoma (mRCC). J Clin Oncol. 2022;40(6_suppl):TPS403–15. doi:10.1200/JCO.2022.40.6_suppl.TPS403.
  • Lopes JE, Fisher JL, Flick HL, Wang C, Sun L, Ernstoff MS, Alvarez JC, Losey HC. ALKS 4230: a novel engineered IL-2 fusion protein with an improved cellular selectivity profile for cancer immunotherapy. J Immunother Cancer. 2020;8(1):8. doi:10.1136/jitc-2020-000673.
  • Vaishampayan UN, Tomczak P, Muzaffar J, Winer IS, Rosen SD, Hoimes CJ, Chauhan A, Spreafico A, Lewis KD, Bruno DS, et al. Nemvaleukin alfa monotherapy and in combination with pembrolizumab in patients (pts) with advanced solid tumors: ARTISTRY-1. J Clin Oncol. 2022;40(16_suppl):2500. doi:10.1200/JCO.2022.40.16_suppl.2500.
  • Nguyen KG, Vrabel MR, Mantooth SM, Hopkins JJ, Wagner ES, Gabaldon TA, Zaharoff DA. Localized interleukin-12 for cancer immunotherapy. Front Immunol. 2020;11:575597. doi:10.3389/fimmu.2020.575597.
  • Niglio SA, Girardi DdM, Cordes LM, Ley L, Mallek M, Sierra Ortiz O, Cadena J, Diaz C, Chalfin H, Kydd A, et al. A phase I study of bintrafusp alfa (M7824) and NHS-IL12 (M9241) alone and in combination with stereotactic body radiation therapy (SBRT) in adults with metastatic non-prostate genitourinary malignancies. J Clin Oncol. 2021;39(15_suppl):TPS4599–TPS. doi:10.1200/JCO.2021.39.15_suppl.TPS4599.
  • Strauss J, Heery CR, Schlom J, Madan RA, Cao L, Kang Z, Lamping E, Marté JL, Donahue RN, Grenga I, et al. Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFβ, in advanced solid tumors. Clin Cancer Res. 2018;24(6):1287–95. doi:10.1158/1078-0432.CCR-17-2653.
  • Fallon J, Tighe R, Kradjian G, Guzman W, Bernhardt A, Neuteboom B, Lan Y, Sabzevari H, Schlom J, Greiner JW, et al. The immunocytokine NHS-IL12 as a potential cancer therapeutic. Oncotarget. 2014;5(7):1869–84. doi:10.18632/oncotarget.1853.
  • Xu C, Marelli B, Qi J, Qin G, Yu H, Wang H, Jenkins MH, Lo KM, Lan Y. NHS-IL12 and bintrafusp alfa combination therapy enhances antitumor activity in preclinical cancer models. Transl Oncol. 2022;16:101322. doi:10.1016/j.tranon.2021.101322.
  • Kinter AL, Godbout EJ, McNally JP, Sereti I, Roby GA, O’Shea MA, Fauci AS. The common γ-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol (Baltimore, Md : 1950). 2008;181(10):6738–46. doi: 10.4049/jimmunol.181.10.6738.
  • Zhou Y, Husman T, Cen X, Tsao T, Brown J, Bajpai A, Li M, Zhou K, Yang L. Interleukin 15 in cell-based cancer immunotherapy. Int J Mol Sci. 2022;23(13):23. doi:10.3390/ijms23137311.
  • Garralda E, Naing A, Galvao V, LoRusso P, Grell P, Cassier PA, Gomez-Roca CA, Korakis I, Bechard D, Palova Jelinkova L, et al. Interim safety and efficacy results from AURELIO-03: a phase 1 dose escalation study of the IL-2/IL-15 receptor βγ superagonist SOT101 as a single agent and in combination with pembrolizumab in patients with advanced solid tumors. J Clin Oncol. 2022;40(16_suppl):2502. doi:10.1200/JCO.2022.40.16_suppl.2502.
  • Wrangle JM, Awad MM, Badin FB, Rubinstein MP, Bhar P, Garner C, Reddy SK, Soon-Shiong P. Preliminary data from QUILT 3.055: a phase 2 multi-cohort study of N803 (IL-15 superagonist) in combination with checkpoint inhibitors (CPI). J Clin Oncol. 2021;39(15_suppl):2596. doi:10.1200/JCO.2021.39.15_suppl.2596.
  • Hunter CA. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol. 2005;5(7):521–31. doi:10.1038/nri1648.
  • Fabbi M, Carbotti G, Ferrini S. Dual roles of IL-27 in cancer biology and immunotherapy. Mediators Inflamm. 2017;2017:3958069. doi:10.1155/2017/3958069.
  • Rausch M, Hua J, Moodley D, White KF, Walsh KH, Miller CE, Tan G, Lee BH, Cousineau I, Lattouf J-B, et al. Increased IL-27 is associated with poor prognosis in renal cell carcinoma and supports use of SRF388, a first-in-class IL-27p28 blocking antibody, to counteract IL-27-mediated immunosuppression in this setting. Cancer Res. 2020;80(16_Supplement):4550. doi:10.1158/1538-7445.AM2020-4550.
  • Naing A, Mantia C, Morgensztern D, Kim T-Y, Li D, Kang Y-K, Marron TU, Tripathi A, George S, Rini BI, et al. First-in-human study of SRF388, a first-in-class IL-27 targeting antibody, as monotherapy and in combination with pembrolizumab in patients with advanced solid tumors. J Clin Oncol. 2022;40(16_suppl):2501. doi:10.1200/JCO.2022.40.16_suppl.2501.
  • Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, Hayakawa Y, Vance RE. STING is a direct innate immune sensor of cyclic di-GMP. Nature. 2011;478(7370):515–8. doi:10.1038/nature10429.
  • Amouzegar A, Chelvanambi M, Filderman JN, Storkus WJ, Luke JJ. STING agonists as cancer therapeutics. Cancers Basel. 2021;13(11):2695. doi:10.3390/cancers13112695.
  • Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Man Lei Y, Jabri B, Alegre M-L, et al. Commensal bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science. 2015;350(6264):1084–9. doi:10.1126/science.aac4255.
  • Chaput N, Lepage P, Coutzac C, Soularue E, Le Roux K, Monot C, Boselli L, Routier E, Cassard L, Collins M, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol. 2017;28(6):1368–79. doi:10.1093/annonc/mdx108.
  • Frankel AE, Coughlin LA, Kim J, Froehlich TW, Xie Y, Frenkel EP, Koh AY. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia (New York, NY). 2017;19(10):848–55. doi:10.1016/j.neo.2017.08.004.
  • Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103. doi:10.1126/science.aan4236.
  • Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–7. doi:10.1126/science.aan3706.
  • Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ, Gajewski TF. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science. 2018;359(6371):104–8. doi:10.1126/science.aao3290.
  • Choi Y, Lichterman JN, Coughlin LA, Poulides N, Li W, Del Valle P, Palmer SN, Gan S, Kim J, Zhan X, et al. Immune checkpoint blockade induces gut microbiota translocation that augments extraintestinal antitumor immunity. Sci Immunol. 2023;8(81):eabo2003. doi:10.1126/sciimmunol.abo2003.
  • Derosa L, Hellmann MD, Spaziano M, Halpenny D, Fidelle M, Rizvi H, Long N, Plodkowski AJ, Arbour KC, Chaft JE, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol. 2018;29(6):1437–44. doi:10.1093/annonc/mdy103.
  • Xavier JB, Young VB, Skufca J, Ginty F, Testerman T, Pearson AT, Macklin P, Mitchell A, Shmulevich I, Xie L, et al. The cancer microbiome: distinguishing direct and indirect effects requires a systemic view. Trends Cancer. 2020;6(3):192–204. doi:10.1016/j.trecan.2020.01.004.
  • Nomura M, Nagatomo R, Doi K, Shimizu J, Baba K, Saito T, Matsumoto S, Inoue K, Muto M. Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors. JAMA Netw Open. 2020;3(4):e202895. doi:10.1001/jamanetworkopen.2020.2895.
  • Tsikala-Vafea M, Belani N, Vieira K, Khan H, Farmakiotis D. Use of antibiotics is associated with worse clinical outcomes in patients with cancer treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Int J Infect Dis. 2021;106:142–54. doi:10.1016/j.ijid.2021.03.063.
  • Meza L, Feng M, Lee K, Sperandio R, Pal SK. The gut microbiome and metastatic renal cell carcinoma. J Clin Med. 2023;12(4):12. doi:10.3390/jcm12041502.
  • Stoeva MK, Garcia-So J, Justice N, Myers J, Tyagi S, Nemchek M, McMurdie PJ, Kolterman O, Eid J. Butyrate-producing human gut symbiont, clostridium butyricum, and its role in health and disease. Gut Microbes. 2021;13(1):1–28. doi:10.1080/19490976.2021.1907272.
  • Salgia NJ, Bergerot PG, Maia MC, Dizman N, Hsu J, Gillece JD, Folkerts M, Reining L, Trent J, Highlander SK, et al. Stool microbiome profiling of patients with metastatic renal cell carcinoma receiving anti–PD-1 immune checkpoint inhibitors. Eur Urol. 2020;78(4):498–502. doi:10.1016/j.eururo.2020.07.011.
  • Tomita Y, Ikeda T, Sakata S, Saruwatari K, Sato R, Iyama S, Jodai T, Akaike K, Ishizuka S, Saeki S, et al. Association of probiotic clostridium butyricum therapy with survival and response to immune checkpoint blockade in patients with lung cancer. Cancer Immunol Res. 2020;8(10):1236–42. doi:10.1158/2326-6066.CIR-20-0051.
  • Dizman N, Meza L, Bergerot P, Alcantara M, Dorff T, Lyou Y, Frankel P, Cui Y, Mira V, Llamas M, et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat Med. 2022;28(4):704–12. doi:10.1038/s41591-022-01694-6.
  • Meza LA, Lee K, Malhotra J, Alcantara M, Zengin ZB, Dizman N, Dizman N, Govindarajan A, Hsu J, Llamas-Quitiquit M, et al. Effect of CBM588 in combination with cabozantinib plus nivolumab for patients (pts) with metastatic renal cell carcinoma (mRCC): a randomized clinical trial. J Clin Oncol. 2023;41(17_suppl):LBA104–LBA. doi:10.1200/JCO.2023.41.17_suppl.LBA104.
  • Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, Katz L, Adler K, Dick-Necula D, Raskin S, Bloch N, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2021;371(6529):602–9. doi:10.1126/science.abb5920.
  • Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin JM, Morrison RM, Deblasio RN, Menna C, Ding Q, Pagliano O, et al. Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science. 2021;371(6529):595–602. doi:10.1126/science.abf3363.
  • Halsey TM, Thomas AS, Hayase T, Ma W, Abu-Sbeih H, Sun B, Parra ER, Jiang Z-D, DuPont HL, Sanchez C, et al. Microbiome alteration via fecal microbiota transplantation is effective for refractory immune checkpoint inhibitor–induced colitis. Sci Transl Med. 2023;15(700):eabq4006. doi:10.1126/scitranslmed.abq4006.
  • Porcari S, Ciccarese C, Pinto F, Quaranta G, Giorgi SD, Rondinella D, Settanni CR, Cortesi E, Roberto M, Primi F, et al. Fecal microbiota transplantation to improve efficacy of immune checkpoint inhibitors in renal cell carcinoma (TACITO trial). J Clin Oncol. 2022;40(6_suppl):TPS407–TPS. doi:10.1200/JCO.2022.40.6_suppl.TPS407.
  • Maurice-Dror C, Tirosh O, Ben-Shabat SK, Eshar S, Plolonsky O, Davis N, Haber E, Meshner S, Perets R. BMC128: a rationally designed live bacterial consortium for the potentiation of immune checkpoint therapy in solid tumors. J Clin Oncol. 2022;40(16_suppl):TPS2685–TPS. doi:10.1200/JCO.2022.40.16_suppl.TPS2685.
  • Marin-Acevedo JA, Kimbrough EO, Lou Y. Next generation of immune checkpoint inhibitors and beyond. J Hematol Oncol. 2021;14(1):45. doi:10.1186/s13045-021-01056-8.
  • Maruhashi T, Sugiura D, Okazaki IM, Okazaki T. LAG-3: from molecular functions to clinical applications. J Immunother Cancer. 2020;8(2):8. doi:10.1136/jitc-2020-001014.
  • Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, Castillo Gutiérrez E, Rutkowski P, Gogas HJ, Lao CD, De Menezes JJ, et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med. 2022;386(1):24–34. doi:10.1056/NEJMoa2109970.
  • Schöffski P, Tan DSW, Martín M, Ochoa-de-Olza M, Sarantopoulos J, Carvajal RD, Kyi C, Esaki T, Prawira A, Akerley W, et al. Phase I/II study of the LAG-3 inhibitor ieramilimab (LAG525) ± anti-PD-1 spartalizumab (PDR001) in patients with advanced malignancies. J Immunother Cancer. 2022;10(2):10. doi:10.1136/jitc-2021-003776.
  • Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 2017;276(1):97–111. doi:10.1111/imr.12520.
  • Curigliano G, Gelderblom H, Mach N, Doi T, Tai D, Forde PM, Sarantopoulos J, Bedard PL, Lin C-C, Hodi FS, et al. Phase I/Ib clinical trial of sabatolimab, an anti–TIM-3 antibody, alone and in combination with Spartalizumab, an anti–PD-1 antibody, in advanced solid tumors. Clin Cancer Res. 2021;27(13):3620–9. doi:10.1158/1078-0432.CCR-20-4746.
  • Zhang L, Geng Z, Hao B, Geng Q. Tislelizumab: a modified anti-tumor programmed death receptor 1 antibody. Cancer Control. 2022;29:10732748221111296. doi:10.1177/10732748221111296.
  • Harjunpää H, Guillerey C. TIGIT as an emerging immune checkpoint. Clin Exp Immunol. 2020;200(2):108–19. doi:10.1111/cei.13407.
  • Cho BC, Abreu DR, Hussein M, Cobo M, Patel AJ, Secen N, Lee KH, Massuti B, Hiret S, Yang JCH, et al. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol. 2022;23(6):781–92. doi:10.1016/S1470-2045(22)00226-1.
  • Kang X, Kim J, Deng M, John S, Chen H, Wu G, Phan H, Zhang CC. Inhibitory leukocyte immunoglobulin-like receptors: immune checkpoint proteins and tumor sustaining factors. Cell Cycle. 2016;15(1):25–40. doi:10.1080/15384101.2015.1121324.
  • Rouas-Freiss N, LeMaoult J, Verine J, Tronik-Le Roux D, Culine S, Hennequin C, Desgrandchamps F, Carosella ED. Intratumor heterogeneity of immune checkpoints in primary renal cell cancer: focus on HLA-G/ILT2/ILT4. Oncoimmunology. 2017;6(9):e1342023. doi:10.1080/2162402X.2017.1342023.
  • Mondal K, Song C, Tian J, Ho C, Rivera L, Huang J, Chen P, Crawley S, Lin V, Sitrin J, et al. Preclinical evaluation of NGM707, a novel anti-ILT2/anti-ILT4 dual antagonist monoclonal antibody. Cancer Res 2021;81(13_Supplement):LB156. doi:10.1158/1538-7445.AM2021-LB156.
  • Cella M, Döhring C, Samaridis J, Dessing M, Brockhaus M, Lanzavecchia A, Colonna M. A novel inhibitory receptor (ILT3) expressed on monocytes, macrophages, and dendritic cells involved in antigen processing. J Exp Med. 1997;185(10):1743–51. doi:10.1084/jem.185.10.1743.
  • Singh L, Muise ES, Bhattacharya A, Grein J, Javaid S, Stivers P, Zhang J, Qu Y, Joyce-Shaikh B, Loboda A, et al. ILT3 (LILRB4) promotes the immunosuppressive function of tumor-educated human monocytic myeloid-derived suppressor cells. In: Molecular cancer research. Vol. 19. MCR; 2021. p. 702–16. doi:10.1158/1541-7786.MCR-20-0622.
  • Paavola KJ, Roda JM, Lin VY, Chen P, O’Hollaren KP, Ventura R, Crawley SC, Li B, Chen HIH, Malmersjö S, et al. The fibronectin–ILT3 interaction functions as a stromal checkpoint that suppresses myeloid cells. Cancer Immunol Res. 2021;9(11):1283–97. doi:10.1158/2326-6066.CIR-21-0240.
  • Qiu H, Shao Z, Wen X, Jiang J, Ma Q, Wang Y, Huang L, Ding X, Zhang L. TREM2: keeping pace with immune checkpoint inhibitors in cancer immunotherapy. Front Immunol. 2021;12:716710. doi:10.3389/fimmu.2021.716710.
  • Khantakova D, Brioschi S, Molgora M. Exploring the impact of TREM2 in tumor-associated macrophages. Vaccines. 2022;10(6):10. doi:10.3390/vaccines10060943.
  • Zhang H, Sheng L, Tao J, Chen R, Li Y, Sun Z, Qian W. Depletion of the triggering receptor expressed on myeloid cells 2 inhibits progression of renal cell carcinoma via regulating related protein expression and PTEN-PI3K/Akt pathway. Int J Oncol. 2016;49(6):2498–506. doi:10.3892/ijo.2016.3740.
  • Patnaik A, Hamilton EP, Winer IS, Tan W, Hubbard JM, Schenk EL, Sonbol MB, Jahchan N, Pierce K, Li Y, et al. A phase 1a dose-escalation study of PY314, a TREM2 (Triggering Receptor Expressed on Macrophages 2) targeting monoclonal antibody. J Clin Oncol. 2022;40(16_suppl):2648. doi:10.1200/JCO.2022.40.16_suppl.2648.
  • Wang L, Rubinstein R, Lines JL, Wasiuk A, Ahonen C, Guo Y, Lu L-F, Gondek D, Wang Y, Fava RA, et al. VISTA, a novel mouse ig superfamily ligand that negatively regulates T cell responses. J Exp Med. 2011;208(3):577–92. doi:10.1084/jem.20100619.
  • Hong S, Yuan Q, Xia H, Zhu G, Feng Y, Wang Q, Zhang Z, He W, Lu J, Dong C, et al. Analysis of VISTA expression and function in renal cell carcinoma highlights VISTA as a potential target for immunotherapy. Protein Cell. 2019;10(11):840–5. doi:10.1007/s13238-019-0642-z.
  • Zapała Ł, Kunc M, Sharma S, Pęksa R, Popęda M, Biernat W, Radziszewski P. Immune checkpoint receptor VISTA on immune cells is associated with expression of T-cell exhaustion marker TOX and worse prognosis in renal cell carcinoma with venous tumor thrombus. J Cancer Res Clin Oncol. 2023;149(7):4131–9. doi:10.1007/s00432-022-04329-y.
  • Sasikumar PG, Sudarshan NS, Adurthi S, Ramachandra RK, Samiulla DS, Lakshminarasimhan A, Ramanathan A, Chandrasekhar T, Dhudashiya AA, Talapati SR, et al. PD-1 derived CA-170 is an oral immune checkpoint inhibitor that exhibits preclinical anti-tumor efficacy. Commun Biol. 2021;4(1):699. doi:10.1038/s42003-021-02191-1.
  • Bang Y, Sosman J, Daud A, Meric-Bernstam F, Garcia-Corbacho J, Patel M, Lee J, Kim KP, Brody J, Rha SY, et al. Phase 1 study of CA-170, a first-in-class, orally available, small molecule immune checkpoint inhibitor (ICI) dually targeting VISTA and PD-L1, in patients with advanced solid tumors or lymphomas. J Immunother Cancer. 2018;6:114.
  • Wojciechowicz K, Spodzieja M, Lisowska KA, Wardowska A. The role of the BTLA-HVEM complex in the pathogenesis of autoimmune diseases. Cell Immunol. 2022;376:104532. doi:10.1016/j.cellimm.2022.104532.
  • Alves Costa Silva C, Facchinetti F, Routy B, Derosa L. New pathways in immune stimulation: targeting OX40. Vol. 5. ESMO Open; 2020. doi:10.1136/esmoopen-2019-000573.
  • Kim AMJ, Nemeth MR, Lim SO. 4-1BB: a promising target for cancer immunotherapy. Front Oncol. 2022;12:968360. doi:10.3389/fonc.2022.968360.
  • Davis EJ, Martin-Liberal J, Kristeleit R, Cho DC, Blagden SP, Berthold D, Cardin DB, Vieito M, Miller RE, Hari Dass P, et al. First-in-human phase I/II, open-label study of the anti-OX40 agonist INCAGN01949 in patients with advanced solid tumors. J Immunother Cancer. 2022;10(10):10. doi:10.1136/jitc-2021-004235.
  • Gutierrez M, Moreno V, Heinhuis KM, Olszanski AJ, Spreafico A, Ong M, Chu Q, Carvajal RD, Trigo J, Ochoa de Olza M, et al. OX40 agonist BMS-986178 alone or in combination with nivolumab and/or ipilimumab in patients with advanced solid tumors. Clin Cancer Res. 2021;27(2):460–72. doi:10.1158/1078-0432.CCR-20-1830.
  • Sadeghi S, Parikh RA, Tsao-Wei DD, Groshen SG, Li M, Appleman LJ, Tagawa ST, Nanus DM, Molina AM, Kefauver C, et al. Phase II randomized double blind trial of axitinib (Axi) +/- PF-04518600, an OX40 antibody (PFOX) after PD1/PDL1 antibody (IO) therapy (Tx) in metastatic renal cell carcinoma (mRCC). J Clin Oncol. 2022;40(16_suppl):4529–. doi:10.1200/JCO.2022.40.16_suppl.4529.
  • Fulton R, Gan J, Lu Y-Y, Crivello J, Duda Z, Wang Z, Silver R, Staskus A, Ortega C, Ellouze S, et al. Clinical approach and biomarker strategy for HFB301001, a novel OX40 agonistic antibody. Cancer Res. 2021;81(13_Supplement):1882. doi:10.1158/1538-7445.AM2021-1882.
  • Liu Y, Jiang B, Zhang T, Wang Z, Feng Y, Li H, Gong W, Wang X, Gao Y, Zhou X, et al. 699 A differentiated anti-OX40 agonist BGB-A445 does not block OX40-OX40L interaction and reveals remarkable anti-tumor efficacy in preclinical models. J Immunother Cancer. 2020;8:A420–A.
  • Rowell E, Kinkead H, Torretti E, Becklund B, Sulzmaier F, Crago W, Jones K, Timmer J, Deveraux Q, Eckelman B, et al. 856 INBRX-106: a novel hexavalent anti-OX40 agonist for the treatment of solid tumors. J Immunother Cancer. 2021;9:A897–A. doi:10.1136/jitc-2021-SITC2021.856.
  • Johnson M, Siu L, Hong D, Schoffski P, Galvao V, Rangwala F, Hernandez R, Gonzalez L, Ma B, Pandite L, et al. 494 Phase 1 dose escalation and dose expansion study of an agonist redirected checkpoint (ARC) fusion protein, SL-279252 (PD1-Fc-OX40L), in subjects with advanced solid tumors or lymphomas. J Immunother Cancer. 2021;9:A526–A. doi:10.1136/jitc-2021-SITC2021.494.
  • Tolcher AW, Sznol M, Hu-Lieskovan S, Papadopoulos KP, Patnaik A, Rasco DW, Di Gravio D, Huang B, Gambhire D, Chen Y, et al. Phase Ib study of utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in combination with pembrolizumab (MK-3475) in patients with advanced solid tumors. Clin Cancer Res. 2017;23(18):5349–57. doi:10.1158/1078-0432.CCR-17-1243.
  • Diab A, Hamid O, Thompson JA, Ros W, Eskens F, Doi T, Hu-Lieskovan S, Klempner SJ, Ganguly B, Fleener C, et al. A phase I, open-label, dose-escalation study of the OX40 agonist ivuxolimab in patients with locally advanced or metastatic cancers. Clin Cancer Res. 2022;28(1):71–83. doi:10.1158/1078-0432.CCR-21-0845.
  • Hamid O, Chiappori AA, Thompson JA, Doi T, Hu-Lieskovan S, Eskens F, Ros W, Diab A, Spano J-P, Rizvi NA, et al. First-in-human study of an OX40 (ivuxolimab) and 4-1BB (utomilumab) agonistic antibody combination in patients with advanced solid tumors. J Immunother Cancer. 2022;10(10):10. doi:10.1136/jitc-2022-005471.
  • Starzer AM, Berghoff AS. New emerging targets in cancer immunotherapy: CD27 (TNFRSF7). Vol. 4. ESMO Open; 2020. p. e000629. doi:10.1136/esmoopen-2019-000629.
  • Flieswasser T, Van den Eynde A, Van Audenaerde J, De Waele J, Lardon F, Riether C, de Haard H, Smits E, Pauwels P, Jacobs J, et al. The CD70-CD27 axis in oncology: the new kids on the block. J Exp Clin Cancer Res. 2022;41(1):12. doi:10.1186/s13046-021-02215-y.
  • Diegmann J, Junker K, Loncarevic IF, Michel S, Schimmel B, von Eggeling F. Immune escape for renal cell carcinoma: CD70 mediates apoptosis in lymphocytes. Neoplasia (New York, NY). 2006;8(11):933–8. doi:10.1593/neo.06451.
  • Sanborn RE, Pishvaian MJ, Callahan MK, Weise A, Sikic BI, Rahma O, Cho DC, Rizvi NA, Sznol M, Lutzky J, et al. Safety, tolerability and efficacy of agonist anti-CD27 antibody (varlilumab) administered in combination with anti-PD-1 (nivolumab) in advanced solid tumors. J Immunother Cancer. 2022;10(8):10. doi:10.1136/jitc-2022-005147.
  • Sun C, Wang B, Hao S. Adenosine-A2A receptor pathway in cancer immunotherapy. Front Immunol. 2022;13:837230. doi:10.3389/fimmu.2022.837230.
  • Chen S, Wainwright DA, Wu JD, Wan Y, Matei DE, Zhang Y, Zhang B. CD73: an emerging checkpoint for cancer immunotherapy. Immunotherapy. 2019;11(11):983–97. doi:10.2217/imt-2018-0200.
  • Fong L, Hotson A, Powderly JD, Sznol M, Heist RS, Choueiri TK, George S, Hughes BGM, Hellmann MD, Shepard DR, et al. Adenosine 2A receptor blockade as an immunotherapy for treatment-refractory renal cell cancer. Cancer Discov. 2020;10(1):40–53. doi:10.1158/2159-8290.CD-19-0980.
  • Miller RA, Luke JJ, Hu S, Mahabhashyam S, Jones WB, Marron T, Merchan JR, Hughes BGM, Willingham SB. Anti-CD73 antibody activates human B cells, enhances humoral responses and induces redistribution of B cells in patients with cancer. J Immunother Cancer. 2022;10(12):10. doi:10.1136/jitc-2022-005802.
  • Luke JJ, Powderly JD, Merchan JR, Barve MA, Hotson AN, Mobasher M, Kwei L, Luciano G, Buggy JJ, Piccione E, et al. Immunobiology, preliminary safety, and efficacy of CPI-006, an anti-CD73 antibody with immune modulating activity, in a phase 1 trial in advanced cancers. J Clin Oncol. 2019;37(15_suppl):2505–. doi:10.1200/JCO.2019.37.15_suppl.2505.
  • Bai R, Lv Z, Xu D, Cui J. Predictive biomarkers for cancer immunotherapy with immune checkpoint inhibitors. Biomark Res. 2020;8(1):34. doi:10.1186/s40364-020-00209-0.
  • Labriola MK, Zhu J, Gupta RT, McCall S, Jackson J, Kong EF, White JR, Cerqueira G, Gerding K, Simmons JK, et al. Characterization of tumor mutation burden, PD-L1 and DNA repair genes to assess relationship to immune checkpoint inhibitors response in metastatic renal cell carcinoma. J Immunother Cancer. 2020;8(1):e000319. doi:10.1136/jitc-2019-000319.
  • Joseph RW, Kapur P, Serie DJ, Parasramka M, Ho TH, Cheville JC, Frenkel E, Parker AS, Brugarolas J. Clear cell renal cell carcinoma subtypes identified by BAP1 and PBRM1 expression. J Urol. 2016;195(1):180–7. doi:10.1016/j.juro.2015.07.113.
  • Kapur P, Rajaram S, Brugarolas J. The expanding role of BAP1 in clear cell renal cell carcinoma. Hum Pathol. 2023;133:22–31. doi:10.1016/j.humpath.2022.07.022.
  • Dai J, Cui Y, Liang X, Xu J, Li J, Chen Y, Zhang E, Guo R. PBRM1 mutation as a predictive biomarker for immunotherapy in multiple cancers. Front Genet. 2022;13:1066347. doi:10.3389/fgene.2022.1066347.
  • Liu XD, Kong W, Peterson CB, McGrail DJ, Hoang A, Zhang X, Lam T, Pilie PG, Zhu H, Beckermann KE, et al. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat Commun. 2020;11(1):2135. doi:10.1038/s41467-020-15959-6.
  • Lu M, Zhao B, Liu M, Wu L, Li Y, Zhai Y, Shen X. Pan-cancer analysis of SETD2 mutation and its association with the efficacy of immunotherapy. NPJ Precis Oncol. 2021;5(1):51. doi:10.1038/s41698-021-00193-0.
  • Sönmez MG, Sönmez L. New treatment modalities with vaccine therapy in renal cell carcinoma. Urol Ann. 2019;11(2):119–25. doi:10.4103/UA.UA_166_17.
  • Abd-Aziz N, Poh CL, Ding X. Development of peptide-based vaccines for Cancer. J Oncol. 2022;2022:1–17. doi:10.1155/2022/9749363.
  • Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol. 2021;18(4):215–29. doi:10.1038/s41571-020-00460-2.
  • Rini BI, Stenzl A, Zdrojowy R, Kogan M, Shkolnik M, Oudard S, Weikert S, Bracarda S, Crabb SJ, Bedke J, et al. IMA901, a multipeptide cancer vaccine, plus sunitinib versus sunitinib alone, as first-line therapy for advanced or metastatic renal cell carcinoma (IMPRINT): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2016;17(11):1599–611. doi:10.1016/S1470-2045(16)30408-9.
  • Brentville VA, Metheringham RL, Daniels I, Atabani S, Symonds P, Cook KW, Vankemmelbeke M, Choudhury R, Vaghela P, Gijon M, et al. Combination vaccine based on citrullinated vimentin and enolase peptides induces potent CD4-mediated anti-tumor responses. J Immunother Cancer. 2020;8(1):8. doi:10.1136/jitc-2020-000560.
  • Lopez JS, Camidge R, Iafolla M, Rottey S, Schuler M, Hellmann M, Balmanoukian A, Dirix L, Gordon M, Sullivan R, et al. Abstract CT301: a phase Ib study to evaluate RO7198457, an individualized neoantigen specific immunoTherapy (iNeST), in combination with atezolizumab in patients with locally advanced or metastatic solid tumors. Cancer Res. 2020;80(16_Supplement):CT301. doi:10.1158/1538-7445.AM2020-CT301.
  • Marciscano AE, Anandasabapathy N. The role of dendritic cells in cancer and anti-tumor immunity. Semin Immunol. 2021;52:101481. doi:10.1016/j.smim.2021.101481.
  • Figlin RA, Tannir NM, Uzzo RG, Tykodi SS, Chen DYT, Master V, Kapoor A, Vaena D, Lowrance W, Bratslavsky G, et al. Results of the ADAPT phase 3 study of rocapuldencel-T in combination with sunitinib as first-line therapy in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2020;26(10):2327–36. doi:10.1158/1078-0432.CCR-19-2427.
  • Storkus WJ, Maurer D, Lin Y, Ding F, Bose A, Lowe D, Rose A, DeMark M, Karapetyan L, Taylor JL, et al. Dendritic cell vaccines targeting tumor blood vessel antigens in combination with dasatinib induce therapeutic immune responses in patients with checkpoint-refractory advanced melanoma. J Immunother Cancer. 2021;9(11):e003675. doi:10.1136/jitc-2021-003675.
  • Koido S, Homma S, Okamoto M, Namiki Y, Takakura K, Uchiyama K, Kajihara M, Arihiro S, Imazu H, Arakawa H, et al. Fusions between dendritic cells and whole tumor cells as anticancer vaccines. Oncoimmunology. 2013;2(5):e24437. doi:10.4161/onci.24437.
  • Bartlett DL, Liu Z, Sathaiah M, Ravindranathan R, Guo Z, He Y, Guo ZS. Oncolytic viruses as therapeutic cancer vaccines. Mol Cancer. 2013;12(1):103. doi:10.1186/1476-4598-12-103.
  • Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I, Agarwala SS, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–8. doi:10.1200/JCO.2014.58.3377.
  • Rha SY, Merchan J, Oh SY, Kim C, Bae WK, Lee HW, Dillon M, Deering R, Kroog G, Ha KS, et al. Abstract CT121: a phase Ib study of recombinant vaccinia virus in combination with immune checkpoint inhibition (ICI) in advanced renal cell carcinoma (RCC). Cancer Res. 2020;80(16_Supplement):CT121–CT. doi:10.1158/1538-7445.AM2020-CT121.
  • Chung V, Kos FJ, Hardwick N, Yuan Y, Chao J, Li D, Waisman J, Li M, Zurcher K, Frankel P, et al. Evaluation of safety and efficacy of p53MVA vaccine combined with pembrolizumab in patients with advanced solid cancers. Clin Transl Oncol. 2019;21(3):363–72. doi:10.1007/s12094-018-1932-2.
  • Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):69. doi:10.1038/s41408-021-00459-7.
  • Lamers CH, Klaver Y, Gratama JW, Sleijfer S, Debets R. Treatment of metastatic renal cell carcinoma (mRCC) with CAIX CAR-engineered T-cells–a completed study overview. Biochem Soc Trans. 2016;44(3):951–9. doi:10.1042/BST20160037.
  • Courcier J, de la Taille A, Nourieh M, Leguerney I, Lassau N, Ingels A. Carbonic anhydrase IX in renal cell carcinoma, implications for disease management. Int J Mol Sci. 2020;21(19):21. doi:10.3390/ijms21197146.
  • Shuch BM, Pantuck AJ, Bernhard J-C, Morris MA, Master VA, Scott AM, Van Praet C, Bailly C, Aksoy T, Merkx R, et al. Results from phase 3 study of 89Zr-DFO-girentuximab for PET/CT imaging of clear cell renal cell carcinoma (ZIRCON). J Clin Oncol. 2023;41(6_suppl):LBA602–LBA. doi:10.1200/JCO.2023.41.6_suppl.LBA602.
  • Feldman DR, Motzer RJ, Knezevic A, Lee C-H, Voss MH, Lyashchenko SK, Park H, Larson SM, Pandit-Taskar N. STARLITE 2: Phase 2 study of nivolumab plus 177Lutetium-labeled anti-carbonic anhydrase IX (CAIX) monoclonal antibody girentuximab (177Lu-girentuximab) in patients (pts) with advanced clear cell renal cell carcinoma (ccRCC). J Clin Oncol. 2022;40(16_suppl):TPS4603–TPS. doi:10.1200/JCO.2022.40.16_suppl.TPS4603.
  • Lamers CH, Sleijfer S, van Steenbergen S, van Elzakker P, van Krimpen B, Groot C, Vulto A, den Bakker M, Oosterwijk E, Debets R, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther. 2013;21(4):904–12. doi:10.1038/mt.2013.17.
  • Jilaveanu LB, Sznol J, Aziz SA, Duchen D, Kluger HM, Camp RL. CD70 expression patterns in renal cell carcinoma. Hum Pathol. 2012;43(9):1394–9. doi:10.1016/j.humpath.2011.10.014.
  • Pal S, Tran B, Haanen J, Hurwitz M, Sacher A, Agarwal N, Tannir N, Budde E, Harrison S, Klobuch S, et al. 558 CTX130 allogeneic CRISPR-Cas9–engineered chimeric antigen receptor (CAR) T cells in patients with advanced clear cell renal cell carcinoma: results from the phase 1 COBALT-RCC study. J Immunother Cancer. 2022;10:A584–A.
  • Srour S, Kotecha R, Curti B, Chahoud J, Drakaki A, Tang L, Goyal L, Prashad S, Szenes V, Norwood K, et al. Abstract CT011: a phase 1 multicenter study (TRAVERSE) evaluating the safety and efficacy of ALLO-316 following conditioning regimen in pts with advanced or metastatic clear cell renal cell carcinoma (ccRCC). Cancer Res. 2023;83(8_Supplement):CT011–CT. doi:10.1158/1538-7445.AM2023-CT011.
  • Rasmussen NR, Debebe Z, Wright TM, Brooks SA, Sendor AB, Brannon AR, Hakimi AA, Hsieh JJ, Choueiri TK, Tamboli P, et al. Expression of Ror2 mediates invasive phenotypes in renal cell carcinoma. PLoS One. 2014;9(12):e116101. doi:10.1371/journal.pone.0116101.
  • Yang CM, Ji S, Li Y, Fu LY, Jiang T, Meng FD. Ror2, a developmentally regulated kinase, is associated with tumor growth, apoptosis, migration, and invasion in renal cell carcinoma. Oncol Res. 2017;25(2):195–205. doi:10.3727/096504016X14732772150424.
  • Yu H, Liu R, Ma B, Li X, Yen HY, Zhou Y, Krasnoperov V, Xia Z, Zhang X, Bove AM, et al. Axl receptor tyrosine kinase is a potential therapeutic target in renal cell carcinoma. Br J Cancer. 2015;113(4):616–25. doi:10.1038/bjc.2015.237.
  • Zucca LE, Morini Matushita MA, da Silva Oliveira RJ, Scapulatempo-Neto C, de Lima MA, Ribeiro GG, Viana CR, Cárcano FM, Reis RM. Expression of tyrosine kinase receptor AXL is associated with worse outcome of metastatic renal cell carcinomas treated with sunitinib. Urol Oncol. 2018;36(1):11.e3–.e21. doi:10.1016/j.urolonc.2017.09.003.