943
Views
1
CrossRef citations to date
0
Altmetric
Immunology

From bench to bedside via bytes: Multi-omic immunoprofiling and integration using machine learning and network approaches

, , , & ORCID Icon
Article: 2282803 | Received 15 Jul 2023, Accepted 09 Nov 2023, Published online: 15 Dec 2023

References

  • Ma S, Zhang B, LaFave LM, Earl AS, Chiang Z, Hu Y, Ding J, Brack A, Kartha VK, Tay T, et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell. 2020;183(4):1103–16.e20. doi:10.1016/j.cell.2020.09.056.
  • Cao J, Cusanovich DA, Ramani V, Aghamirzaie D, Pliner HA, Hill AJ, Daza RM, McFaline-Figueroa JL, Packer JS, Christiansen L, et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science. 2018;361(6409):1380–12. doi:10.1126/science.aau0730.
  • Arunachalam PS, Wimmers F, Mok CKP, Perera RAPM, Scott M, Hagan T, Sigal N, Feng Y, Bristow L, Tak-Yin Tsang O, et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science. 2020;369(6508):1210–20. doi:10.1126/science.abc6261.
  • Kotliarov Y, Sparks R, Martins AJ, Mulè MP, Lu Y, Goswami M, Kardava L, Banchereau R, Pascual V, Biancotto A, et al. Broad immune activation underlies shared set point signatures for vaccine responsiveness in healthy individuals and disease activity in patients with lupus. Nat Med. 2020;26(4):618–29. doi:10.1038/s41591-020-0769-8.
  • Arunachalam PS, Charles TP, Joag V, Bollimpelli VS, Scott MKD, Wimmers F, Burton SL, Labranche CC, Petitdemange C, Gangadhara S, et al. T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nat Med. 2020;26(6):932–40. doi:10.1038/s41591-020-0858-8.
  • Su Y, Chen D, Yuan D, Lausted C, Choi J, Dai CL, Voillet V, Duvvuri VR, Scherler K, Troisch P, et al. Multi-omics resolves a sharp disease-state shift between mild and moderate COVID-19. Cell. 2020;183(6):1479–95.e20. doi:10.1016/j.cell.2020.10.037.
  • Wu SZ, Al-Eryani G, Roden DL, Junankar S, Harvey K, Andersson A, Thennavan A, Wang C, Torpy JR, Bartonicek N, et al. A single-cell and spatially resolved atlas of human breast cancers. Nat Genet. 2021;53(9):1334–47. doi:10.1038/s41588-021-00911-1.
  • Bassez A, Vos H, Van Dyck L, Floris G, Arijs I, Desmedt C, Boeckx B, Vanden Bempt M, Nevelsteen I, Lambein K, et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat Med. 2021;27(5):820–32. doi:10.1038/s41591-021-01323-8.
  • Sacco K, Castagnoli R, Vakkilainen S, Liu C, Delmonte OM, Oguz C, Kaplan IM, Alehashemi S, Burbelo PD, Bhuyan F, et al. Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19. Nat Med. 2022;28(5):1050–62. doi:10.1038/s41591-022-01724-3.
  • Liu C, Martins AJ, Lau WW, Rachmaninoff N, Chen J, Imberti L, Mostaghimi D, Fink DL, Burbelo PD, Dobbs K, et al. Time-resolved systems immunology reveals a late juncture linked to fatal COVID-19. Cell. 2021;184(7):1836–57.e22. doi:10.1016/j.cell.2021.02.018.
  • Fourati S, Tomalin LE, Mulè MP, Chawla DG, Gerritsen B, Rychkov D, Henrich E, Miller HER, Hagan T, Diray-Arce J, et al. Pan-vaccine analysis reveals innate immune endotypes predictive of antibody responses to vaccination. Nat Immunol. 2022;23(12):1777–87. doi:10.1038/s41590-022-01329-5.
  • Hagan T, Gerritsen B, Tomalin LE, Fourati S, Mulè MP, Chawla DG, Rychkov D, Henrich E, Miller HER, Diray-Arce J, et al. Transcriptional atlas of the human immune response to 13 vaccines reveals a common predictor of vaccine-induced antibody responses. Nat Immunol. 2022;23(12):1788–98. doi:10.1038/s41590-022-01328-6.
  • Ma J, Bai H, Gong T, Mao W, Nie Y, Zhang X, Da Y, Wang X, Qin H, Zeng Q, et al. Novel skewed usage of B-cell receptors in COVID-19 patients with various clinical presentations. Immunol Lett. 2022;249:23–32. doi:10.1016/j.imlet.2022.08.006.
  • Cai X, Li JJ, Liu T, Brian O, Li J. Infectious disease mRNA vaccines and a review on epitope prediction for vaccine design. Brief Funct Genomics. 2021;20(5):289–303. doi:10.1093/bfgp/elab027.
  • Lu L, Ma W, Johnson CH, Khan SA, Irwin ML, Pusztai L. In silico designed mRNA vaccines targeting CA-125 neoantigen in breast and ovarian cancer. Vaccine. 2023;41(12):2073–83. doi:10.1016/j.vaccine.2023.02.048.
  • Mimitou EP, Cheng A, Montalbano A, Hao S, Stoeckius M, Legut M, Roush T, Herrera A, Papalexi E, Ouyang Z, et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat Methods. 2019;16(5):409–12. doi:10.1038/s41592-019-0392-0.
  • Collora JA, Liu R, Pinto-Santini D, Ravindra N, Ganoza C, Lama JR, Alfaro R, Chiarella J, Spudich S, Mounzer K, et al. Single-cell multiomics reveals persistence of HIV-1 in expanded cytotoxic T cell clones. Immunity. 2022;55(6):1013–31.e7. doi:10.1016/j.immuni.2022.03.004.
  • Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, Welch J, Chen LM, Chen F, Macosko EZ. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019;363:1463–7. doi:10.1126/science.aaw1219.
  • Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science. 2015;348(6233):aaa6090. doi:10.1126/science.aaa6090.
  • Black S, Phillips D, Hickey JW, Kennedy-Darling J, Venkataraaman VG, Samusik N, Goltsev Y, Schürch CM, Nolan GP. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat Protoc. 2021;16(8):3802–35. doi:10.1038/s41596-021-00556-8.
  • Liu S, Iorgulescu JB, Li S, Borji M, Barrera-Lopez IA, Shanmugam V, Lyu H, Morriss JW, Garcia ZN, Murray E, et al. Spatial maps of T cell receptors and transcriptomes reveal distinct immune niches and interactions in the adaptive immune response. Immunity. 2022;55(10):1940–52.e5. doi:10.1016/j.immuni.2022.09.002.
  • Sudmeier LJ, Hoang KB, Nduom EK, Wieland A, Neill SG, Schniederjan MJ, Ramalingam SS, Olson JJ, Ahmed R, Hudson WH. Distinct phenotypic states and spatial distribution of CD8+ T cell clonotypes in human brain metastases. Cell Rep Med. 2022;3:100620. doi:10.1016/j.xcrm.2022.100620.
  • Nomura F, Tsuchida S, Murata S, Satoh M, Matsushita K. Mass spectrometry-based microbiological testing for blood stream infection. Clin Proteomics. 2020;17(1):14. doi:10.1186/s12014-020-09278-7.
  • Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E, Rolain JM, Raoult D. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis. 2009;49(4):543–51. doi:10.1086/600885.
  • Liang B, Zhu Y, Shi W, Ni C, Tan B, Tang S. SARS-CoV-2 spike protein post-translational modification landscape and its impact on protein structure and function via computational prediction. Research. 2023;6:0078. doi:10.34133/research.0078.
  • Noble WS, MacCoss MJ, Bourne PE. Computational and statistical analysis of protein mass spectrometry data. PLoS Comput Biol. 2012;8(1):e1002296. doi:10.1371/journal.pcbi.1002296.
  • Kim CH, Tworoger SS, Stampfer MJ, Dillon ST, Gu X, Sawyer SJ, Chan AT, Libermann TA, Eliassen AH. Stability and reproducibility of proteomic profiles measured with an aptamer-based platform. Sci Rep. 2018;8(1):8382. doi:10.1038/s41598-018-26640-w.
  • Brückner A, Polge C, Lentze N, Auerbach D, Schlattner U. Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci. 2009;10(6):2763–88. doi:10.3390/ijms10062763.
  • Sahni N, Yi S, Taipale M, Fuxman Bass JI, Coulombe-Huntington J, Yang F, Peng J, Weile J, Karras GI, Wang Y, et al. Widespread macromolecular interaction perturbations in human genetic disorders. Cell. 2015;161(3):647–60. doi:10.1016/j.cell.2015.04.013.
  • Ratnasiri K, Wilk AJ, Lee MJ, Khatri P, Blish CA. Single-cell RNA-seq methods to interrogate virus-host interactions. Semin Immunopathol. 2023;45(1):71–89. doi:10.1007/s00281-022-00972-2.
  • Udani S, Langerman J, Koo D, Baghdasarian S, Cheng B, Kang S, Soemardy C, de Rutte J, Plath K, Di Carlo D. Secretion encoded single-cell sequencing (SEC-seq) uncovers gene expression signatures associated with high VEGF-A secretion in mesenchymal stromal cells. bioRxiv. 2023. doi:10.1101/2023.01.07.523110.
  • Li S, Sullivan NL, Rouphael N, Yu T, Banton S, Maddur MS, McCausland M, Chiu C, Canniff J, Dubey S, et al. Metabolic phenotypes of response to vaccination in humans. Cell. 2017;169(5):862–77.e17. doi:10.1016/j.cell.2017.04.026.
  • Li C, Lee A, Grigoryan L, Arunachalam PS, Scott MKD, Trisal M, Wimmers F, Sanyal M, Weidenbacher PA, Feng Y, et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat Immunol. 2022;23(4):543–55. doi:10.1038/s41590-022-01163-9.
  • Röltgen K, Nielsen SCA, Silva O, Younes SF, Zaslavsky M, Costales C, Yang F, Wirz OF, Solis D, Hoh RA, et al. Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell. 2022;185(6):1025–40.e14. doi:10.1016/j.cell.2022.01.018.
  • Arunachalam PS, Feng Y, Ashraf U, Hu M, Walls AC, Edara VV, Zarnitsyna VI, Aye PP, Golden N, Miranda MC, et al. Durable protection against the SARS-CoV-2 Omicron variant is induced by an adjuvanted subunit vaccine. Sci Transl Med. 2022;14:eabq4130. doi:10.1126/scitranslmed.abq4130.
  • Arunachalam PS, Scott MKD, Hagan T, Li C, Feng Y, Wimmers F, Grigoryan L, Trisal M, Edara VV, Lai L, et al. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature. 2021;596:410–6. doi:10.1038/s41586-021-03791-x.
  • Zhang S, Cooper-Knock J, Weimer AK, Shi M, Kozhaya L, Unutmaz D, Harvey C, Julian TH, Furini S, Frullanti E, et al. Multiomic analysis reveals cell-type-specific molecular determinants of COVID-19 severity. Cell Syst. 2022;13:598–614.e6. doi:10.1016/j.cels.2022.05.007.
  • Su Y, Yuan D, Chen DG, Ng RH, Wang K, Choi J, Li S, Hong S, Zhang R, Xie J, et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022;185(5):881–95.e20. doi:10.1016/j.cell.2022.01.014.
  • Zhang A, Stacey HD, D’Agostino MR, Tugg Y, Marzok A, Miller MS. Beyond neutralization: Fc-dependent antibody effector functions in SARS-CoV-2 infection. Nat Rev Immunol. 2023;23:381–96. doi:10.1038/s41577-022-00813-1.
  • Li Q, Liu Q, Huang W, Li X, Wang Y. Current status on the development of pseudoviruses for enveloped viruses. Rev Med Virol [Internet]. 2018;28. doi:10.1002/rmv.1963.
  • DiLillo DJ, Tan GS, Palese P, Ravetch JV. Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo. Nat Med. 2014;20:143–51. doi:10.1038/nm.3443.
  • DiLillo DJ, Palese P, Wilson PC, Ravetch JV. Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection. J Clin Invest. 2016;126(2):605–10. doi:10.1172/JCI84428.
  • Gunn BM, Yu W-H, Karim MM, Brannan JM, Herbert AS, Wec AZ, Halfmann PJ, Fusco ML, Schendel SL, Gangavarapu K, et al. A role for Fc function in therapeutic monoclonal antibody-mediated protection against Ebola virus. Cell Host Microbe. 2018;24(2):221–33.e5. doi:10.1016/j.chom.2018.07.009.
  • Schäfer A, Muecksch F, Lorenzi JCC, Leist SR, Cipolla M, Bournazos S, Schmidt F, Maison RM, Gazumyan A, Martinez DR, et al. Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. J Exp Med [Internet]. 2021;218. doi:10.1084/jem.20201993.
  • Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, Macosko EZ. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell. 2019;177(7):1873–87.e17. doi:10.1016/j.cell.2019.05.006.
  • Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, Hao Y, Stoeckius M, Smibert P, Satija R. Comprehensive Integration of Single-Cell Data. Cell. 2019;177(7):1888–902.e21. doi:10.1016/j.cell.2019.05.031. PMID: 31178118.
  • Argelaguet R, Arnol D, Bredikhin D, Deloro Y, Velten B, Marioni JC, Stegle O. MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol. 2020;21(1):111. doi:10.1186/s13059-020-02015-1.
  • Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–87.e29. doi:10.1016/j.cell.2021.04.048.
  • Wu KE, Yost KE, Chang HY, Zou J. BABEL enables cross-modality translation between multiomic profiles at single-cell resolution. Proc Natl Acad Sci USA [Internet]. 2021;118. doi:10.1073/pnas.2023070118.
  • Hao Y, Stuart T, Kowalski MH, Choudhary S, Hoffman P, Hartman A, Srivastava A, Molla G, Madad S, Fernandez-Granda C, et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat Biotechnol. 2023. doi:10.1038/s41587-023-01767-y.
  • Gong B, Zhou Y, Purdom E. Cobolt: integrative analysis of multimodal single-cell sequencing data. Genome Biol. 2021;22(1):351. doi:10.1186/s13059-021-02556-z.
  • Kleshchevnikov V, Shmatko A, Dann E, Aivazidis A, King HW, Li T, Elmentaite R, Lomakin A, Kedlian V, Gayoso A, et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat Biotechnol. 2022;40(5):661–71. doi:10.1038/s41587-021-01139-4.
  • Cable DM, Murray E, Zou LS, Goeva A, Macosko EZ, Chen F, Irizarry RA. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat Biotechnol. 2022;40(4):517–26. doi:10.1038/s41587-021-00830-w.
  • Brbić M, Cao K, Hickey JW, Tan Y, Snyder MP, Nolan GP, Leskovec J. Annotation of spatially resolved single-cell data with STELLAR. Nat Methods. 2022;19(11):1411–18. doi:10.1038/s41592-022-01651-8.
  • Ackerman ME, Das J, Pittala S, Broge T, Linde C, Suscovich TJ, Brown EP, Bradley T, Natarajan H, Lin S, et al. Route of immunization defines multiple mechanisms of vaccine-mediated protection against SIV. Nat Med. 2018;24(10):1590–8. doi:10.1038/s41591-018-0161-0.
  • Das J, Devadhasan A, Linde C, Broge T, Sassic J, Mangano M, O’Keefe S, Suscovich T, Streeck H, Irrinki A, et al. Mining for humoral correlates of HIV control and latent reservoir size. PLoS Pathog. 2020;16(10):e1008868. doi:10.1371/journal.ppat.1008868.
  • Suscovich TJ, Fallon JK, Das J, Demas AR, Crain J, Linde CH, Michell A, Natarajan H, Arevalo C, Broge T, et al. Mapping functional humoral correlates of protection against malaria challenge following RTS,S/AS01 vaccination. Sci Transl Med. 2020;12. doi:10.1126/scitranslmed.abb4757.
  • Das J, Fallon JK, Yu TC, Michell A, Suscovich TJ, Linde C, Natarajan H, Weiner J, Coccia M, Gregory S, et al. Delayed fractional dosing with RTS,S/AS01 improves humoral immunity to malaria via a balance of polyfunctional NANP6- and Pf16-specific antibodies. Med. 2021;2(11):1269–86.e9. doi:10.1016/j.medj.2021.10.003.
  • Lu LL, Chung AW, Rosebrock TR, Ghebremichael M, Yu WH, Grace PS, Schoen MK, Tafesse F, Martin C, Leung V, et al. A functional role for antibodies in tuberculosis. Cell. 2016;167(2):433–43.e14. doi:10.1016/j.cell.2016.08.072.
  • Lu LL, Das J, Grace PS, Fortune SM, Restrepo BI, Alter G. Antibody Fc glycosylation discriminates between latent and active tuberculosis. J Infect Dis. 2020;222(12):2093–102. doi:10.1093/infdis/jiz643.
  • Jennewein MF, Goldfarb I, Dolatshahi S, Cosgrove C, Noelette FJ, Krykbaeva M, Das J, Sarkar A, Gorman MJ, Fischinger S, et al. Fc glycan-mediated regulation of placental antibody transfer. Cell. 2019;178(1):202–15.e14. doi:10.1016/j.cell.2019.05.044.
  • Kaplonek P, Cizmeci D, Kwatra G, Izu A, Lee J-L, Bertera HL, Fischinger S, Mann C, Amanat F, Wang W, et al. ChAdOx1 nCoV-19 (AZD1222) vaccine-induced Fc receptor binding tracks with differential susceptibility to COVID-19. Nat Immunol. 2023;24:1161–72. doi:10.1038/s41590-023-01513-1.
  • Bing X, Lovelace T, Bunea F, Wegkamp M, Kasturi SP, Singh H, Benos PV, Das J. Essential regression: a generalizable framework for inferring causal latent factors from multi-omic datasets. Patterns (NY). 2022;3:100473. doi:10.1016/j.patter.2022.100473.
  • Rual J-F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature. 2005;437:1173–8. doi:10.1038/nature04209.
  • Yook S-H, Oltvai ZN, Barabási A-L. Functional and topological characterization of protein interaction networks. Proteomics. 2004;4(4):928–42. doi:10.1002/pmic.200300636.
  • Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411(6833):41–2. doi:10.1038/35075138.
  • Ideker T, Ozier O, Schwikowski B, Siegel AF. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics. 2002;18(Suppl 1):S233–40. doi:10.1093/bioinformatics/18.suppl_1.S233.
  • Leiserson MDM, Vandin F, Wu H-T, Dobson JR, Eldridge JV, Thomas JL, Papoutsaki A, Kim Y, Niu B, McLellan M, et al. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat Genet. 2015;47(2):106–14. doi:10.1038/ng.3168.
  • Ningappa M, Rahman SA, Higgs BW, Ashokkumar CS, Sahni N, Sindhi R, Das J. A network-based approach to identify expression modules underlying rejection in pediatric liver transplantation. Cell Rep Med. 2022;3:100605. doi:10.1016/j.xcrm.2022.100605.
  • Barrio-Hernandez I, Schwartzentruber J, Shrivastava A, Del-Toro N, Gonzalez A, Zhang Q, Mountjoy E, Suveges D, Ochoa D, Ghoussaini M, et al. Network expansion of genetic associations defines a pleiotropy map of human cell biology. Nat Genet. 2023;55(3):389–98. doi:10.1038/s41588-023-01327-9.
  • Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O’Meara MJ, Rezelj VV, Guo JZ, Swaney DL, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583:459–68. doi:10.1038/s41586-020-2286-9.
  • Shah PS, Link N, Jang GM, Sharp PP, Zhu T, Swaney DL, Johnson JR, Von Dollen J, Ramage HR, Satkamp L, et al. Comparative flavivirus-host protein interaction mapping reveals mechanisms of dengue and zika virus pathogenesis. Cell. 2018;175(7):1931–45.e18. doi:10.1016/j.cell.2018.11.028.
  • Hiatt J, Hultquist JF, McGregor MJ, Bouhaddou M, Leenay RT, Simons LM, Young JM, Haas P, Roth TL, Tobin V, et al. A functional map of HIV-host interactions in primary human T cells. Nat Commun. 2022;13(1):1752. doi:10.1038/s41467-022-29346-w.
  • Placek K, Schultze JL, Aschenbrenner AC. Epigenetic reprogramming of immune cells in injury, repair, and resolution. J Clin Invest. 2019;129(8):2994–3005. doi:10.1172/JCI124619.
  • Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow F, Marine J-C, Geurts P, Aerts J, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14(11):1083–6. doi:10.1038/nmeth.4463.
  • Zhu Y, Chen Z, Zhang K, Wang M, Medovoy D, Whitaker JW, Ding B, Li N, Zheng L, Wang W. Constructing 3D interaction maps from 1D epigenomes. Nat Commun. 2016;7(1):10812. doi:10.1038/ncomms10812.
  • Zhang K, Wang M, Zhao Y, Wang W. Taiji: system-level identification of key transcription factors reveals transcriptional waves in mouse embryonic development. Sci Adv. 2019;5:eaav3262. doi:10.1126/sciadv.aav3262.
  • Sciammas R, Li Y, Warmflash A, Song Y, Dinner AR, Singh H. An incoherent regulatory network architecture that orchestrates B cell diversification in response to antigen signaling. Mol Syst Biol. 2011;7(1):495. doi:10.1038/msb.2011.25.
  • Ciofani M, Madar A, Galan C, Sellars M, Mace K, Pauli F, Agarwal A, Huang W, Parkhurst CN, Muratet M, et al. A validated regulatory network for Th17 cell specification. Cell. 2012;151:289–303. doi:10.1016/j.cell.2012.09.016.
  • Forster DT, Li SC, Yashiroda Y, Yoshimura M, Li Z, Isuhuaylas LAV, Itto-Nakama K, Yamanaka D, Ohya Y, Osada H, et al. BIONIC: biological network integration using convolutions. Nat Methods. 2022;19(10):1250–61. doi:10.1038/s41592-022-01616-x.
  • Meyer MJ, Beltrán JF, Liang S, Fragoza R, Rumack A, Liang J, Wei X, Yu H. Interactome INSIDER: a structural interactome browser for genomic studies. Nat Methods. 2018;15(2):107–14. doi:10.1038/nmeth.4540.
  • Wierbowski SD, Liang S, Liu Y, Chen Y, Gupta S, Andre NM, Lipkin SM, Whittaker GR, Yu H. A 3D structural SARS-CoV-2–human interactome to explore genetic and drug perturbations. Nat Methods. 2021;18(12):1477–88. doi:10.1038/s41592-021-01318-w.
  • Fragoza R, Das J, Wierbowski SD, Liang J, Tran TN, Liang S, Beltran JF, Rivera-Erick CA, Ye K, Wang T-Y, et al. Extensive disruption of protein interactions by genetic variants across the allele frequency spectrum in human populations. Nat Commun. 2019;10(1):4141. doi:10.1038/s41467-019-11959-3.
  • Chen H, Ryu J, Vinyard ME, Lerer A, Pinello L. SIMBA: single-cell embedding along with features. Nat Methods [Internet]. 2023. doi:10.1038/s41592-023-01899-8.