1,315
Views
0
CrossRef citations to date
0
Altmetric
Novel Vaccines

Lung mucosal immunity to NTHi vaccine antigens: Antibodies in sputum of chronic obstructive pulmonary disease patients

Article: 2343544 | Received 07 Dec 2023, Accepted 12 Apr 2024, Published online: 24 Apr 2024

References

  • World Health Organization. The top 10 causes of death; [accessed 2023 Feb 13] https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
  • MacNee W. ABC of chronic obstructive pulmonary disease. Pathology, pathogenesis, and pathophysiology. BMJ. 2006;332(7551):1202–9. doi:10.1136/bmj.332.7551.1202.
  • MacNee W, Tuder RM. New paradigms in the pathogenesis of chronic obstructive pulmonary disease I. Proc Am Thorac Soc. 2009;6(6):527–31. doi:10.1513/pats.200905-027DS.
  • Donaldson GC, Seemungal TAR, Bhowmik A, Wedzicha JA. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax. 2002;57(10):847–52. doi:10.1136/thorax.57.10.847.
  • European Respiratory Society. European Lung White Book. Respiratory Health and Disease in Europe. Sheffield, UK: European Respiratory Society; 2013.
  • Sethi S, Evans N, Grant BJB, Murphy TF. New strains of bacteria and exacerbations of chronic obstructive pulmonary disease. N Engl J Med. 2002;347(7):465–71. doi:10.1056/NEJMoa012561.
  • Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med. 2008;359(22):2355–65. doi:10.1056/NEJMra0800353.
  • Wilkinson TMA, Aris E, Bourne S, Clarke SC, Peeters M, Pascal TG, Schoonbroodt S, Tuck AC, Kim V, Ostridge K, et al. A prospective, observational cohort study of the seasonal dynamics of airway pathogens in the aetiology of exacerbations in COPD. Thorax. 2017;72(10):919–27. doi:10.1136/thoraxjnl-2016-209023.
  • Wilkinson TMA, Aris E, Bourne SC, Clarke SC, Peeters M, Pascal TG, Taddei L, Tuck AC, Kim VL, Ostridge KK, et al. Drivers of year-to-year variation in exacerbation frequency of COPD: analysis of the AERIS cohort. ERJ Open Res. 2019;5(1):00248–2018. doi:10.1183/23120541.00248-2018.
  • Andreas S, Testa M, Boyer L, Brusselle G, Janssens W, Kerwin E, Papi A, Pek B, Puente-Maestu L, Saralaya D, et al. Non-typeable Haemophilus influenzae–Moraxella catarrhalis vaccine for the prevention of exacerbations in chronic obstructive pulmonary disease: a multicentre, randomised, placebo-controlled, observer-blinded, proof-of-concept, phase 2b trial. Lancet Respir Med. 2022;10(5):435–46. doi:10.1016/S2213-2600(21)00502-6.
  • Wilkinson TMA, Schembri S, Brightling C, Bakerly ND, Lewis K, MacNee W, Rombo L, Hedner J, Allen M, Walker PP, et al. Non-typeable Haemophilus influenzae protein vaccine in adults with COPD: a phase 2 clinical trial. Vaccine. 2019;37(41):6102–11. doi:10.1016/j.vaccine.2019.07.100.
  • Leroux-Roels G, Van Damme P, Haazen W, Shakib S, Caubet M, Aris E, Devaster J-M, Peeters M. Phase I, randomized, observer-blind, placebo-controlled studies to evaluate the safety, reactogenicity and immunogenicity of an investigational non-typeable Haemophilus influenzae (NTHi) protein vaccine in adults. Vaccine. 2016;34(27):3156–63. doi:10.1016/j.vaccine.2016.04.051.
  • Van Damme P, Leroux-Roels G, Vandermeulen C, De Ryck I, Tasciotti A, Dozot M, Moraschini L, Testa M, Arora AK. Safety and immunogenicity of non-typeable Haemophilus influenzae-Moraxella catarrhalis vaccine. Vaccine. 2019;37(23):3113–22. doi:10.1016/j.vaccine.2019.04.041.
  • Brown MA, Morgan SB, Donachie GE, Horton KL, Pavord ID, Arancibia-Cárcamo CV, Hinks, TSC. Epithelial immune activation and intracellular invasion by non-typeable Haemophilus influenzae. Front Cell Infect Microbiol. 2023;13:1141798. doi:10.3389/fcimb.2023.1141798.
  • Ackland J, Heinson AI, Cleary DW, Christodoulides M, Wilkinson TMA, Staples KJ. Dual RNASeq Reveals NTHi-Macrophage Transcriptomic Changes During Intracellular Persistence. Front Cell Infect Microbiol. 2021;11:723481. doi:10.3389/fcimb.2021.723481.
  • Langereis JD, Hermans PW. Novel concepts in nontypeable Haemophilus influenzae biofilm formation. FEMS Microbiol Lett. 2013;346(2):81–9. doi:10.1111/1574-6968.12203.
  • Southworth T, Jackson N, Singh D. Airway immune responses to COVID-19 vaccination in COPD patients and healthy subjects. Eur Respir J. 2022;60(2):2200497. doi:10.1183/13993003.00497-2022.
  • Ren C, Gao Y, Zhang C, Zhou C, Hong Y, Qu M, Zhao Z, Du Y, Yang L, Liu B, et al. Respiratory mucosal immunity: kinetics of secretory immunoglobulin A in sputum and throat swabs from COVID-19 patients and vaccine recipients. Front Microbiol. 2022;13:782421. doi:10.3389/fmicb.2022.782421.
  • Aksyuk AA, Bansal H, Wilkins D, Stanley AM, Sproule S, Maaske J, Sanikommui S, Hartman WR, Sobieszczyk ME, Falsey AR, et al. AZD1222-induced nasal antibody responses are shaped by prior SARS-CoV-2 infection and correlate with virologic outcomes in breakthrough infection. Cell Rep Med. 2023;4(1):100882. doi:10.1016/j.xcrm.2022.100882.
  • Twigg HL 3rd. Humoral immune defense (antibodies): recent advances. Proc Am Thorac Soc. 2005;2(5):417–21. doi:10.1513/pats.200508-089JS.
  • Wagner DK, Clements ML, Reimer CB, Snyder M, Nelson DL, Murphy BR. Analysis of immunoglobulin G antibody responses after administration of live and inactivated influenza A vaccine indicates that nasal wash immunoglobulin G is a transudate from serum. J Clin Microbiol. 1987;25(3):559–62. doi:10.1128/jcm.25.3.559-562.1987.
  • Hill SL, Mitchell JL, Burnett D, Stockley RA. IgG subclasses in the serum and sputum from patients with bronchiectasis. Thorax. 1998;53(6):463–8. doi:10.1136/thx.53.6.463.
  • Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(26):2645–53. doi:10.1056/NEJMoa032158.
  • Gosman MME, Willemse BWM, Jansen DF, Lapperre TS, van Schadewijk A, Hiemstra PS, Postma DS, Timens W, Kerstjens HAM. Increased number of B-cells in bronchial biopsies in COPD. Eur Respir J. 2006;27(1):60–4. doi:10.1183/09031936.06.00007005.
  • van der Strate BWA, Postma DS, Brandsma CA, Melgert BN, Luinge BB, Geerlings M, Hylkema MN, van den Berg A, Timens W, Kerstjens HAM, et al. Cigarette smoke–induced emphysema. A role for the B cell? Am J Respir Crit Care Med. 2006;173(7):751–8. doi:10.1164/rccm.200504-594OC.
  • Brusselle GG, Demoor T, Bracke KR, Brandsma CA, Timens W. Lymphoid follicles in (very) severe COPD: beneficial or harmful? Eur Respir J. 2009;34(1):219–30. doi:10.1183/09031936.00150208.
  • Yadava K, Bollyky P, Lawson MA. The formation and function of tertiary lymphoid follicles in chronic pulmonary inflammation. Immunol. 2016;149(3):262–9. doi:10.1111/imm.12649.
  • Arora AK, Chinsky K, Keller C, Mayers I, Pascual-Guardia S, Vera MP, Lambert C, Lombardi S, Rondini S, Tian S, et al. A detailed analysis of possible efficacy signals of NTHi-Mcat vaccine against severe COPD exacerbations in a previously reported randomised phase 2b trial. Vaccine. 2022;40(41):5924–32. doi:10.1016/j.vaccine.2022.08.053.
  • Brettoni C, Muzzi A, Rondini S, Weynants V, Rossi Paccani S. Ex-vivo RNA expression analysis of vaccine candidate genes in COPD sputum samples. Respir Res. 2023;24(1):243. doi:10.1186/s12931-023-02525-z.
  • Staples KJ, Taylor S, Thomas S, Leung S, Cox K, Pascal TG, Ostridge K, Welch L, Tuck AC, Clarke SC, et al. Relationships between Mucosal Antibodies, Non-Typeable Haemophilus influenzae (NTHi) infection and airway inflammation in COPD. PLOS ONE. 2016;11(11):e0167250. doi:10.1371/journal.pone.0167250.