1,142
Views
0
CrossRef citations to date
0
Altmetric
Influenza

The economic rationale for cell-based influenza vaccines in children and adults: A review of cost-effectiveness analyses

, , , , , , , & show all
Article: 2351675 | Received 12 Jan 2024, Accepted 02 May 2024, Published online: 04 Jun 2024

References

  • de Courville C, Cadarette SM, Wissinger E, Alvarez FP. The economic burden of influenza among adults aged 18 to 64: a systematic literature review. Influenza Other Respir Viruses. 2022;16(3):376–12. doi:10.1111/irv.12963.
  • Villani L, D’Ambrosio F, Ricciardi R, de Waure C, Calabrò GE. Seasonal influenza in children: costs for the health system and society in Europe. Influenza Other Respir Viruses. 2022;16(5):820–31. doi:10.1111/irv.12991.
  • World Health Organization. Influenza. https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/vaccine-standardization/influenza#:~:text=Influenza%20occurs%20all%20over%20the,disruption%20across%20all%20age%20groups.
  • Paget WJ, Balderston C, Casas I, Donker G, Edelman L, Fleming D, Larrauri A, Meijer A, Puzelli S, Rizzo C, et al., EPIA collaborators. Assessing the burden of paediatric influenza in Europe: the European Paediatric Influenza Analysis (EPIA) project. Eur J Pediatr. 2010;169(8):997–1008. doi:10.1007/s00431-010-1164-0.
  • Ruf BR, Knuf M. The burden of seasonal and pandemic influenza in infants and children. Eur J Pediatr. 2014;173(3):265–76. (In eng). doi:10.1007/s00431-013-2023-6.
  • Tillard C, Chazard E, Faure K, Bartolo S, Martinot A, Dubos F. Burden of influenza disease in children under 2 years of age hospitalized between 2011 and 2020 in France. J Infect. 2022;84(2):145–50. doi:10.1016/j.jinf.2021.11.006.
  • Seqirus. FLUCELVAX QUADRIVALENT (influenza vaccine) prescribing information. 2021 Oct. https://www.fda.gov/media/115862/download?attachment.
  • Advisory Committee on Immunization Practices. Prevention and control of seasonal influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP)—United States, 2023–24. Sum. recom. 2023 Aug 23. https://www.cdc.gov/flu/pdf/professionals/acip/acip-2023-24-Summary-Flu-Vaccine-Recommendations.pdf.
  • European Medicines Agency. Flucelvax Tetra. 2023 Dec 15. https://www.ema.europa.eu/en/medicines/human/EPAR/flucelvax-tetra.
  • European Medicines Agency. Fluenz Tetra. 2023 Aug 7. https://www.ema.europa.eu/en/medicines/human/EPAR/fluenz-tetra.
  • Gomez Lorenzo MM, Fenton MJ. Immunobiology of influenza vaccines. Chest. 2013;143(2):502–10. (In eng). doi:10.1378/chest.12-1711.
  • Bouvier NM, Palese P. The biology of influenza viruses. Vaccine. 2008;26(Suppl 4):D49–53. (In eng). doi: 10.1016/j.vaccine.2008.07.039.
  • Zanobini P, Bonaccorsi G, Lorini C, Haag M, McGovern I, Paget J, Caini S. Global patterns of seasonal influenza activity, duration of activity and virus (sub)type circulation from 2010 to 2020. Influenza Other Respir Viruses. 2022;16(4):696–706. doi:10.1111/irv.12969.
  • World Health Organization. Recommended composition of influenza virus vaccines for use in the 2024 southern hemisphere influenza season. 2023 Sept 29. https://www.who.int/publications/m/item/recommended-composition-of-influenza-virus-vaccines-for-use-in-the-2024-southern-hemisphere-influenza-season.
  • Greenberg D. Industry Perspective: Challenges and Opportunities for Vaccine Strain Composition with the Reduced Public Health Threat from Influenza B/Yamagata Lineage Viruses. Vaccines and Related Biological Products Advisory Committee; 2023 Oct 5. https://www.fda.gov/media/172764/download.
  • Paget J, Caini S, Del Riccio M, van Waarden W, Meijer A. Has influenza B/Yamagata become extinct and what implications might this have for quadrivalent influenza vaccines?. Euro Surveill. 2022;27(39):2200753. doi:10.2807/1560-7917.ES.2022.27.39.2200753.
  • Vajo Z, Torzsa P. Extinction of the influenza B Yamagata line during the COVID pandemic—implications for vaccine composition. Viruses. 2022;14(8):1745. doi:10.3390/v14081745.
  • McLean HQ, Belongia EA. Influenza vaccine effectiveness: new insights and challenges. Cold Spring Harb Perspect Med. 2021;11(6):a038315. (In eng). doi: 10.1101/cshperspect.a038315.
  • Rockman S, Laurie K, Ong C, Rajaram S, McGovern I, Tran V, Youhanna J. Cell-based manufacturing technology increases antigenic match of influenza vaccine and results in improved effectiveness. Vaccines. 2022;11(1):52. doi:10.3390/vaccines11010052.
  • Rajaram S, Boikos C, Gelone DK, Gandhi A. Influenza vaccines: the potential benefits of cell-culture isolation and manufacturing. Ther Adv Vaccines Immunother. 2020;8:2515135520908121. (In eng). doi:10.1177/2515135520908121.
  • Ortiz de Lejarazu-Leonardo R, Montomoli E, Wojcik R, Christopher S, Mosnier A, Pariani E, Trilla Garcia A, Fickenscher H, Gärtner BC, Jandhyala R, et al. Estimation of reduction in influenza vaccine effectiveness due to egg-adaptation changes—systematic literature review and expert consensus. Vaccines. 2021;9(11):1255. doi:10.3390/vaccines9111255.
  • Tenforde MW, Kondor RJG, Chung JR, Zimmerman RK, Nowalk MP, Jackson ML, Jackson LA, Monto AS, Martin ET, Belongia EA. et al. Effect of antigenic drift on influenza vaccine effectiveness in the United States—2019–2020. Clin Infect Dis. 2021;73(11):4244–50. doi:10.1093/cid/ciaa1884.
  • Postma M, Fisman D, Giglio N, Márquez-Peláez S, Nguyen VH, Pugliese A, Ruiz-Aragón J, Urueña A, Mould-Quevedo J. Real-world evidence in cost-effectiveness analysis of enhanced influenza vaccines in adults ≥ 65 years of age: literature review and expert opinion. Vaccines. 2023;11(6):1089. (In eng). doi: 10.3390/vaccines11061089.
  • Chicoye A, Crépey P, Nguyen VH, Márquez-Peláez S, Postma M, Pugliese A, Ruiz-Aragón J, Mould-Quevedo J. Contributions of cost-effectiveness analyses (CEA) to influenza vaccination policy for older adults in europe. Vaccine. 2023;41(38):5518–24. (In eng). doi: 10.1016/j.vaccine.2023.07.073.
  • Ballalai I, Toniolo J, Kfouri R, Vespa G, Magneres C, Mould-Quevedo J, Pires B, Angerami R. Cost-effectiveness of cell-based quadrivalent versus egg-based trivalent influenza vaccination in the Brazilian National Immunization Program. J Bras Econ Saúde. 2021;13(2):136–44. doi:10.21115/JBES.v13.n2.p136-44.
  • Boikos C, Sylvester GC, Sampalis JS, Mansi JA. Relative effectiveness of the cell-cultured quadrivalent influenza vaccine compared to standard, egg-derived quadrivalent influenza vaccines in preventing influenza-like illness in 2017–2018. Clin Infect Dis. 2020;71(10):665–71. (In eng). doi:10.1093/cid/ciaa371.
  • Rizzo C, Trentini F, Capri S, Merler S. Valutazione economica dell’introduzione del nuovo vaccino antinfluenzale quadrivalente da coltura cellulare (Flucelvax® Tetra) nel contesto di cura italiano. Ital J Public Health. 2019;8(5):113–43. https://vaccinoinfluenza.iss.sm/doc/impatto-influenza-valore-vaccinazione.pdf.
  • Boikos T, Sylvester G, Sampalis J, Mansi J. Effectiveness of the cell culture-and egg-derived, seasonal influenza vaccine during the 2017–2018 northern hemisphere influenza season. Bethesda, MD: NFID Clinical Vaccinology Course; 2018.
  • Cai R, Gerlier L, Eichner M, Schwehm M, Rajaram S, Mould-Quevedo J, Lamotte M. Cost-effectiveness of the cell-based quadrivalent versus the standard egg-based quadrivalent influenza vaccine in Germany. J Med Econ. 2021;24(1):490–501. doi:10.1080/13696998.2021.1908000.
  • Ruiz-Aragón J, Gani R, Márquez S, Alvarez P. Estimated cost-effectiveness and burden of disease associated with quadrivalent cell-based and egg-based influenza vaccines in Spain. Hum Vaccin Immunother. 2020;16(9):2238–44. doi:10.1080/21645515.2020.1712935.
  • Nguyen VH, Roy B. Modelling the economic impact of influenza vaccine programs with the cell-based quadrivalent influenza vaccine and adjuvanted trivalent influenza vaccine in Canada. Vaccines. 2022;10(8):1257. (In eng). doi:10.3390/vaccines10081257.
  • Nguyen VH, Hilsky Y, Mould-Quevedo J. The epidemiological and economic impact of a cell-based quadrivalent influenza vaccine in adults in the US: a dynamic modeling approach. Vaccines. 2021;9(10):1095. (In eng). doi:10.3390/vaccines9101095.
  • Chi C-Y, Cheng M-F, Ko K. Mould JF, Chen C-J, Huang Y-C, Lee P-I. Cost-effectiveness analysis of cell-based versus egg-based quadrivalent influenza vaccines in the pediatric population in Taiwan. J Med Virol. 2024;96(1):e29279. (In eng). doi:10.1002/jmv.29279.
  • Urueña A, Micone P, Magneres MC, McGovern I, Mould-Quevedo J, Sarmento TTR, Giglio N. Cost-effectiveness analysis of cell versus egg-based seasonal influenza vaccination in children and adults in Argentina. Vaccines. 2022;10(10):1627. doi:10.3390/vaccines10101627.
  • Pelton SI, Mould-Quevedo JF, Nguyen VH. Modelling the population-level benefits and cost-effectiveness of cell-based quadrivalent influenza vaccine for children and adolescents aged 6 months to 17 years in the US. Expert Rev Vaccines. 2024;23(1):82–7. (In eng). doi:10.1080/14760584.2023.2295014.
  • Kohli MA, Maschio M, Mould-Quevedo JF, Drummond M, Weinstein MC. The cost-effectiveness of an adjuvanted quadrivalent influenza vaccine in the United Kingdom. Hum Vaccin Immunother. 2021;17(11):4603–10. doi:10.1080/21645515.2021.1971017.
  • Maschio M, Kohli MA, Ashraf M, Drummond MF, Weinstein MC, Mould-Quevedo JF. An economic comparison of influenza vaccines recommended for use in eligible adults under 65 years in the United Kingdom. Vaccines. 2022;10(4):599. doi:10.3390/vaccines10040599.
  • Krishnarajah G, Divino V, Postma MJ, Pelton SI, Anupindi VR, DeKoven M, Mould-Quevedo J. Clinical and economic outcomes associated with cell-based quadrivalent influenza vaccine vs. standard-dose egg-based quadrivalent influenza vaccines during the 2018–19 influenza season in the United States. Vaccines. 2021;9(2):80. (In eng). doi: 10.3390/vaccines9020080.
  • Boikos C, Fischer L, O’Brien D, Vasey J, Sylvester GC, Mansi JA. Relative effectiveness of the cell-derived inactivated quadrivalent influenza vaccine versus egg-derived inactivated quadrivalent influenza vaccines in preventing influenza-related medical encounters during the 2018–2019 influenza season in the United States. Clin Infect Dis. 2021;73(3):692–8. In eng. doi:10.1093/cid/ciaa1944.
  • Alvarez FP, Petitjean A, Nealon J, Hollingsworth R, López-Belmonte JL. Cost-effectiveness analysis has to consider all available evidence when informing inputs. Hum Vaccin Immunother. 2021;17(3):694–5. (In eng). doi:10.1080/21645515.2020.1799670.
  • Husereau D, Drummond M, Augustovski F, de Bekker-Grob E, Briggs AH, Carswell C, Caulley L, Chaiyakunapruk N, Greenberg D, Loder E. et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) 2022 explanation and elaboration: a report of the ISPOR CHEERS II Good Practices Task Force. Value in Health. 2022;25(1):10–31. doi:10.1016/j.jval.2021.10.008.
  • World Health Organization. WHO guide for standardization of economic evaluations of immunization programmes, 2nd ed. WHO-IVB-19.10. Geneva: World Health Organization; 2019 Oct 17. https://www.who.int/publications/i/item/who-guide-for-standardization-of-economic-evaluations-of-immunization-programmes-2nd-ed
  • Coleman BL, Gutmanis I, McGovern I, Haag M. Effectiveness of cell-based quadrivalent seasonal influenza vaccine: a systematic review and meta-analysis. Vaccines. 2023;11(10):1607. (In eng). doi: 10.3390/vaccines11101607.
  • Thompson WW, Shay DK, Weintraub E. Brammer L, Bridges CB, Cox NJ, Fukuda K. Influenza-associated hospitalizations in the United States. JAMA. 2004;292(11):1333–40. (In eng). doi:10.1001/jama.292.11.1333.
  • Mould-Quevedo JF, Pelton SI, Nguyen VH. Vaccine effectiveness of cell-based quadrivalent influenza vaccine in children: a narrative review. Vaccines. 2023;11(10):1594. (In eng). doi: 10.3390/vaccines11101594.
  • Zost SJ, Parkhouse K, Gumina ME, Kim K, Diaz Perez S, Wilson PC, Treanor JJ, Sant AJ, Cobey S, Hensley SE. et al. Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proc Natl Acad Sci USA. 2017;114(47):12578–83. (In eng). doi:10.1073/pnas.1712377114.
  • Rolfes MA, Flannery B, Chung JR, O’Halloran A, Garg S, Belongia EA, Gaglani M, Zimmerman RK, Jackson ML, Monto AS, et al., US Influenza Vaccine Effectiveness (Flu VE) Network, the Influenza Hospitalization Surveillance Network, and the Assessment Branch, Immunization Services Division, Centers for Disease Control and Prevention. Effects of influenza vaccination in the United States during the 2017–2018 influenza season. Clin Infect Dis. 2019;69(11):1845–53. (In eng). doi:10.1093/cid/ciz075.
  • Boikos C, McGovern I, Molrine D, Ortiz JR, Puig-Barberà J, Haag M. Review of analyses estimating relative vaccine effectiveness of cell-based quadrivalent influenza vaccine in three consecutive US influenza seasons. Vaccines. 2022;10(6):896. (In eng). doi:10.3390/vaccines10060896.
  • Divino V, Ruthwik Anupindi V, DeKoven M, Mould-Quevedo J, Pelton SI, Postma MJ, Levin MJ. A real-world clinical and economic analysis of cell-derived quadrivalent influenza vaccine compared to standard egg-derived quadrivalent influenza vaccines during the 2019–2020 influenza season in the United States. Open Forum Infect Dis. 2022;9(1):ofab604. (In eng). doi: 10.1093/ofid/ofab604.
  • Divino V, Krishnarajah G, Pelton SI, Mould-Quevedo J, Anupindi VR, DeKoven M, Postma MJ. A real-world study evaluating the relative vaccine effectiveness of a cell-based quadrivalent influenza vaccine compared to egg-based quadrivalent influenza vaccine in the US during the 2017–18 influenza season. Vaccine. 2020;38(40):6334–43. (In eng). doi: 10.1016/j.vaccine.2020.07.023.
  • Stein A. Superior effectiveness of cell-based versus egg-based quadrivalent influenza vaccines against test-confirmed influenza over three consecutive seasons in the United States. The Ninth ESWI Influenza Conference; 17–20 September, 2023; Valencia, Spain. 2023 Sept 19.
  • Chua H, Feng S, Lewnard JA, Sullivan SG, Blyth CC, Lipsitch M, Cowling BJ. The use of test-negative controls to monitor vaccine effectiveness: a systematic review of methodology. Epidemiology. 2020;31(1):43–64. (In eng). doi: 10.1097/ede.0000000000001116.
  • Pitman R, Fisman D, Zaric GS, Postma M, Kretzschmar M, Edmunds J, Brisson M, ISPOR-SMDM Modeling Good Research Practices Task Force. Dynamic transmission modeling: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-5. Value Health. 2012;15(6):828–34. (In eng). doi: 10.1016/j.jval.2012.06.011.
  • German Standing Committee on Vaccination (STIKO). 16 Mar 2016. Modelling methods for predicting epidemiological and health economic effects of vaccinations guidance for analyses to be presented to the German Standing Committee on Vaccination (STIKO): Version 1.0. https://www.nitag-resource.org/sites/default/files/fcf579b0fd106551e22cbebabb28c56ae0a058e2_1.pdf. 2016 (Berlin: Robert Koch Institut)
  • World Health Organization. Guidance on the economic evaluation of influenza vaccination. WHO/IVB/16.05. Geneva: World Health Organization; 2016 Sept. https://apps.who.int/iris/bitstream/handle/10665/250086/WHO-IVB-16.05-eng.pdf
  • Milián E, Kamen AA. Current and emerging cell culture manufacturing technologies for influenza vaccines. Biomed Res Int. 2015;2015:504831. (In eng). doi:10.1155/2015/504831.
  • Coleman BL, Sanderson R, Haag MDM, McGovern I. Effectiveness of the MF59-adjuvanted trivalent or quadrivalent seasonal influenza vaccine among adults 65 years of age or older, a systematic review and meta-analysis. Influenza Other Respir Viruses. 2021;15(6):813–23. doi:10.1111/irv.12871.
  • Liu F, Gross FL, Jefferson SN, Holiday C, Bai Y, Wang L, Zhou B, Levine MZ. Age-specific effects of vaccine egg adaptation and immune priming on A(H3N2) antibody responses following influenza vaccination. J Clin Invest. 2021;131(8):e146138 (In eng). doi:10.1172/jci146138.
  • Kelvin AA, Zambon M. Influenza imprinting in childhood and the influence on vaccine response later in life. Euro Surveill. 2019;24(48):1900720. (In eng). doi: 10.2807/1560-7917.Es.2019.24.48.1900720.
  • Francis T. On the doctrine of original antigenic sin. Proc Am Philos Soc. 1960;104(6):572–8. http://www.jstor.org/stable/985534.
  • Blanchet Zumofen M-H, Frimpter J, Hansen SA. Impact of influenza and influenza-like illness on work productivity outcomes: a systematic literature review. Pharmacoeconomics. 2023;41(3):253–73. (In eng). doi:10.1007/s40273-022-01224-9.
  • Greenhalgh T, Fisman D, Cane DJ, Oliver M, Macintyre CR. Adapt or die: how the pandemic made the shift from EBM to EBM+ more urgent. BMJ Evid Based Med. 2022;27(5):253–60. doi:10.1136/bmjebm-2022-111952.
  • Petersen JM, Ranker LR, Barnard-Mayers R, MacLehose RF, Fox MP. A systematic review of quantitative bias analysis applied to epidemiological research. Int J Epidemiol. 2021;50(5):1708–30. (In eng). doi: 10.1093/ije/dyab061.
  • Mathur MB, VanderWeele TJ. Meta-regression methods to characterize evidence strength using meaningful-effect percentages conditional on study characteristics. Res Synth Methods. 2021;12(6):731–49. (In eng). doi:10.1002/jrsm.1504.
  • Deeks JJ, Higgins JPT, Altman DG. on behalf of the Cochrane Statistical Methods Group. Chapter 10: Analysing data and undertaking meta-analyses. Cochrane Handbook for Systematic Reviews of Interventions version 6.4. Cochrane; 2023 Aug. www.training.cochrane.org/handbook
  • NHS England. National flu immunisation programme 2024 to 2025 letter. 2024 Mar 12. https://www.gov.uk/government/publications/national-flu-immunisation-programme-plan-2024-to-2025/national-flu-immunisation-programme-2024-to-2025-letter