1,198
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Additive creativity: investigating the use of design for additive manufacturing to encourage creativity in the engineering design industry

ORCID Icon, , , , &
Pages 198-222 | Received 12 May 2020, Accepted 19 Aug 2020, Published online: 07 Sep 2020

References

  • 3D Printing | Wohlers Associates. (n.d.). Retrieved October 3, 2019, from https://wohlersassociates.com/#dfam
  • Additive Manufacturing Course. (n.d.). Retrieved September 25, 2019, from https://professional.mit.edu/programs/short-programs/additive-manufacturing
  • Aguilera, E., Ramos, J., Espalin, D., Cedillos, F., Muse, D., Wicker, R., & Macdonald, E. (2013). 3D printing of electro mechanical systems. International Solid Freeform Fabrication Symposium, Austin, TX, USA, 950–961. http://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-76-Aguilera.pdf
  • Ahn, S., Montero, M., Odell, D., Roundy, S., & Wright, P. K. (2002). Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal, 8(4), 248–257. https://doi.org/10.1108/13552540210441166
  • Amabile, T. M. (1996). Creativity in context: Update to the social psychology of creativity. Westview Press.
  • Anderson, N., Potočnik, K., & Zhou, J. (2014). Innovation and creativity in organizations. Journal of Management, 40(5), 1297–1333. https://doi.org/10.1177/0149206314527128
  • ASTM International - Training Courses - Additive Manufacturing Webinar Series. (n.d.). Retrieved September 25, 2019, from https://www.astm.org/TRAIN/filtrexx40.cgi?+-P+ID+342+traindetail.frm
  • Baer, J. (1998). The case for domain specificity of creativity. Creativity Research Journal, 11(2), 173–177. https://doi.org/10.1207/s15326934crj1102_7
  • Baer, J. (2010). Is creativity domain specific? In James C. Kaufman and Robert J. Sternberg (Ed.), The Cambridge handbook of creativity (pp. 321), Cambridge University Press.
  • Baer, J., & McKool, S. S. (2009). Assessing Creativity Using the Consensual Assessment Technique. In Schreiner, C. S. (Ed.), Handbook of Research on Assessment Technologies, Methods, and Applications in Higher Education (pp. 65–77). IGI Global. http:// doi:10.4018/978-1-60566-667-9.ch004
  • Barclift, M., Simpson, T. W., Alessandra Nusiner, M., & Miller, S. (2017). An investigation into the driving factors of creativity in design for additive manufacturing. Volume 3: 19th International Conference on Advanced Vehicle Technologies; 14th International Conference on Design Education; 10th Frontiers in Biomedical Devices, Cleveland, Ohio, USA, 1–14. https://doi.org/10.1115/DETC2017-68395
  • Barling, J., & Abel, M. (1983). Self-efficacy beliefs and tennis performance. Cognitive Therapy and Research, 7(3), 265–272. https://doi.org/10.1007/BF01205140
  • Beaty, R. E., & Silvia, P. J. (2012). Why do ideas get more creative across time? An executive interpretation of the serial order effect in divergent thinking tasks. Psychology of Aesthetics, Creativity, and the Arts, 6(4), 309–319. https://doi.org/10.1037/a0029171
  • Bellini, A. and Güçeri, S. (2003), “Mechanical characterization of parts fabricated using fused deposition modeling”, Rapid Prototyping Journal, Vol. 9 No. 4, pp. 252-264. Rapid Prototyping Journal10 10 9.1108/13552540310489631 4 doi:10.1108/13552540310489631
  • Besemer, S. P. (1998). Creative product analysis matrix: Testing the model structure and a comparison among products-three novel chairs. Creativity Research Journal, 11(4), 333–346. https://doi.org/10.1207/s15326934crj1104
  • Besemer, S. P., & O’Quin, K. (1999). Confirming the three-factor creative product analysis matrix model in an american sample. Creativity Research Journal, 12(4), 329–337. https://doi.org/10.1207/s15326934crj1204
  • Blösch-Paidosh, A., Ahmed-Kristensen, S., & Shea, K. (2019). Evaluating the Potential Of Design For Additive Manufacturing Heuristic Cards To Stimulate Novel Product Redesigns. Volume 2A: 45th Design Automation Conference, Anaheim, California, USA, 1–10. https://doi.org/10.1115/DETC2019-97865
  • Blösch-Paidosh, A., & Shea, K. (2019). Design heuristics for additive manufacturing validated through a user study1. Journal of Mechanical Design, 141(4), 1–40. https://doi.org/10.1115/1.4041051
  • Bøhn, J. H. (1997). Integrating rapid prototyping into the engineering curriculum ‐ a case study. Rapid Prototyping Journal, 3(1), 32–37. https://doi.org/10.1108/13552549710169264
  • Booth, J. W., Alperovich, J., Chawla, P., Ma, J., Reid, T. N., & Ramani, K. (2017). The design for additive manufacturing worksheet. Journal of Mechanical Design, 139(10), 1–9. https://doi.org/10.1115/1.4037251
  • Boothroyd, G. (1994). Product design for manufacture and assembly. Computer-Aided Design, 26(7), 505–520. https://doi.org/10.1016/0010-4485(94)90082-5
  • Borgianni, Y., Maccioni, L., Russo Spena, P., & Shunmugavel, M. K. (2019). University education in additive manufacturing and the need to boost design aspects. Proceedings of the Design Society: International Conference on Engineering Design, 1(1), 629–638. https://doi.org/10.1017/dsi.2019.67
  • Bracken, J. E., Bentley, Z., Meyer, J., Miller, E., Jablokow, K., Simpson, T. W., & Meisel, N. A. (2019). Investigating the gap between research and practice in additive manufacturing. International Solid Freeform Fabrication Symposium, Austin, TX, USA.
  • Brands, R. F., & Kleinman, M. J. (2010). Robert’s rules of innovation: A 10-step program for corporate survival. John Wiley & Sons. https://books.google.com/books?hl=en‎&id=zFSqORbi5O0C&oi=fnd&pg=PR5&dq=Robert%27s+Rules+of+Innovation:+A+10-Step+Program+for+Corporate+Survival&ots=d8fqM_DvPs&sig=0fT5Yczc1RtG5_kbbM6-8sHgngU#v=onepage&q=Robert’s Rules of Innovation%3A A 10-Step Program
  • Bridging | Professional 3D printing made accessible | Ultimaker. (n.d.). Retrieved February 13, 2019, from https://ultimaker.com/en/resources/19643-bridging?fbclid=IwAR3r4fC0hDkxPRjFXbD6NylBlhB2q3sIIwgKyPMILF8uHugVCdCkzmcPkkE
  • Calì, J., Calian, D. A., Amati, C., Kleinberger, R., Steed, A., Kautz, J., & Weyrich, T. (2012). 3D-printing of non-assembly, articulated models. ACM Transactions on Graphics, 31(6), 1. https://doi.org/10.1145/2366145.2366149
  • Carberry, A. R., Lee, H.-S., & Ohland, M. W. (2010). Measuring engineering design self‐efficacy. Journal of Engineering Education, 99(1), 71–79. https://doi.org/10.1002/j.2168-9830.2010.tb01043.x
  • Carroll, B. E., Palmer, T. A., & Beese, A. M. (2015). Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing. Acta Materialia, 87(April), 309–320. https://doi.org/10.1016/j.actamat.2014.12.054
  • Childs, T. H. C., & Juster, N. P. (1994). Linear and geometric accuracies from layer manufacturing. CIRP Annals, 43(1), 163–166. https://doi.org/10.1016/S0007-8506(07)62187-8
  • Chu, C., Graf, G., & Rosen, D. W. (2008). Design for additive manufacturing of cellular structures. Computer-Aided Design and Applications, 5(5), 686–696. https://doi.org/10.3722/cadaps.2008.686-696
  • CIMP-3D | Events. (n.d.). Retrieved April 29, 2019, from http://www.cimp-3d.org/events
  • Compeau, D. R., & Higgins, C. A. (1995). Computer Self-Efficacy: Development of a Measure and Initial Test. MIS Quarterly, 19(2), 189-211. doi:10.2307/249688
  • Cseh, G. M., & Jeffries, K. K. (2019). A scattered CAT: A critical evaluation of the consensual assessment technique for creativity research. Psychology of Aesthetics, Creativity, and the Arts, 13(2), 159–166. https://doi.org/10.1037/aca0000220
  • Daly, S. R., Seifert, C. M., Yilmaz, S., & Gonzalez, R. (2016). Comparing ideation techniques for beginning designers. Journal of Mechanical Design, Transactions of the ASME, 138(10), 1–12. https://doi.org/10.1115/1.4034087
  • Das, P., Chandran, R., Samant, R., & Anand, S. (2015). Optimum part build orientation in additive manufacturing for minimizing part errors and support structures. 43rd Proceedings of the North American Manufacturing Research Institution of SME, 1(1), 309–330. https://doi.org/10.1016/j.promfg.2015.09.041
  • De Laurentis, K. J., Kong, F. F., & Mavroidis, C. (2002). Procedure for rapid fabrication of non-assembly mechanisms with embedded components. Proceedings of the 2002 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Quebec, Canada, 1–7. https://doi.org/10.1115/DETC2002/MECH-34350
  • Dean, D., Hender, J., Rodgers, T., & Santanen, E. (2006). Identifying quality, novel, and creative ideas: Constructs and scales for idea evaluation. Journal of the Association for Information Systems, 7(10), 646–699. https://doi.org/10.17705/1jais.00106
  • Demirtas, H. (2018). Flexible imputation of missing data. Journal of Statistical Software, 85(Book Review 4). https://doi.org/10.18637/jss.v085.b04
  • Design for Additive Manufacturing with Metals | ASME - ASME. (n.d.). Retrieved September 25, 2019, from https://www.asme.org/learning-development/find-course/design-additive-manufacturing-metals
  • Diegel, O., Nordin, A., & Motte, D. (2019). Teaching Design for Additive Manufacturing Through Problem-Based Learning. In: Pei E., Monzón M., Bernard A. (eds) Additive Manufacturing – Developments in Training and Education. Springer, Cham. https://doi.org/10.1007/978-3-319-76084-1_10
  • Doubrovski, E. L., Tsai, E. Y., Dikovsky, D., Geraedts, J. M. P., Herr, H., & Oxman, N. (2015). Voxel-based fabrication through material property mapping: A design method for bitmap printing. CAD Computer Aided Design, 60(March), 3–13. https://doi.org/10.1016/j.cad.2014.05.010
  • Fahad, M., & Hopkinson, N. (2012). A new benchmarking part for evaluating the accuracy and repeatability of Additive Manufacturing (AM) processes. 2nd International Conference on Mechanical, Production, and Automobile Engineering, Singapore, 234–238. http://psrcentre.org/images/extraimages/412635.pdf
  • Ferchow, J., Klahn, C., & Meboldt, M. (2018). Enabling graduate students to design for additive manufacturing through teaching and experience transfer. Proceedings of the 20th International Conference on Engineering and Product Design Education, London, UK, E and PDE 2018, September. https://doi.org/10.3929/ethz-b-000288709
  • Frazier, W. E. (2014). Metal additive manufacturing: A review. Journal of Materials Engineering and Performance, 23(6), 1917–1928. https://doi.org/10.1007/s11665-014-0958-z
  • Garland, A., & Fadel, G. (2015). Design and manufacturing functionally gradient material objects with an off the shelf three-dimensional printer: Challenges and solutions. Journal of Mechanical Design, 137(11), 111407. https://doi.org/10.1115/1.4031097
  • Hennessey, B. A. (1994). The consensual assessment technique: An examination of the relationship between ratings of product and process creativity. Creativity Research Journal, 7(2), 193–208. https://doi.org/10.1080/10400419409534524
  • Hollander, M. A., Wolfe, D., & Chicken, E. (2015). The two‐sample location problem. In Nonparametric statistical methods (3rd ed., pp. 115–150). Wiley. https://doi.org/10.1002/9781119196037.ch4
  • Hopkinson, N., & Dickens, P. (2003). Analysis of rapid manufacturing - Using layer manufacturing processes for production. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 217(1), 31–40. https://doi.org/10.1243/095440603762554596
  • Hu, K., Jin, S., & Wang, C. C. L. (2015). Support slimming for single material based additive manufacturing. CAD Computer Aided Design, 65(August), 1–10. https://doi.org/10.1016/j.cad.2015.03.001
  • Jansson, D. G., & Smith, S. M. (1991). Design fixation. Design Studies, 12(1), 3–11. https://doi.org/10.1016/0142-694X(91)90003-F
  • Jeffries, K. K. (2017). A CAT with caveats: Is the consensual assessment technique a reliable measure of graphic design creativity? International Journal of Design Creativity and Innovation, 5(1–2), 16–28. https://doi.org/10.1080/21650349.2015.1084893
  • Jeffries, K. K., Zamenopoulos, T., & Green, A. J. K. (2018). Design creativity, technical execution and aesthetic appeal: A CAT with caveats (Part 2). International Journal of Design Creativity and Innovation, 6(1–2), 66–79. https://doi.org/10.1080/21650349.2017.1381043
  • Johnson, T. A., Caldwell, B. W., Cheeley, A., & Green, M. G. (2016). Comparison and extension of novelty metrics for problem-solving tasks. Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, North Carolina, USA, 1–12.
  • Kaufman, J. C., & Baer, J. (2012). Beyond new and appropriate: Who decides what is creative? Creativity Research Journal, 24(1), 83–91. https://doi.org/10.1080/10400419.2012.649237
  • Kaufman, J. C., Baer, J., Cropley, D. H., Reiter-Palmon, R., & Sinnett, S. (2013). Furious activity vs. understanding: How much expertise is needed to evaluate creative work? Psychology of Aesthetics, Creativity, and the Arts, 7(4), 332–340. https://doi.org/10.1037/a0034809
  • Kershaw, T. C., Bhowmick, S., Seepersad, C. C., & Hölttä-Otto, K. (2019). A decision tree based methodology for evaluating creativity in engineering design. Frontiers in Psychology, 10(JAN), 1–19. https://doi.org/10.3389/fpsyg.2019.00032
  • Kirschman, C., Jara-Almonte, C., Bagchi, A., Dooley, R., & Ogale, A. (1991). Computer aided design of support structures for stereolithographic components. Proceedings of the 1991 ASME Computers in Engineering Conference, Santa Clara, CA, 91, 443–448.
  • Kumke, M., Watschke, H., Hartogh, P., Bavendiek, A. K., & Vietor, T. (2018). Methods and tools for identifying and leveraging additive manufacturing design potentials. International Journal on Interactive Design and Manufacturing, 12(2), 481–493. https://doi.org/10.1007/s12008-017-0399-7
  • Laverne, F., Segonds, F., Anwer, N., & Le Coq, M. (2015). Assembly based methods to support product innovation in design for additive manufacturing: An exploratory case study. Journal of Mechanical Design, 137(12), 121701. https://doi.org/10.1115/1.4031589
  • Laverne, F., Segonds, F., D’Antonio, G., & Le Coq, M. (2017). Enriching design with X through tailored additive manufacturing knowledge: A methodological proposal. International Journal on Interactive Design and Manufacturing (Ijidem), 11(2), 279–288. https://doi.org/10.1007/s12008-016-0314-7
  • Lee, C. (1982). Self-efficacy as a predictor of performance in competitive gymnastics. Journal of Sport Psychology, 4(4), 405–409. https://doi.org/10.1123/jsp.4.4.405
  • Li, C., Fu, C. H., Guo, Y. B., & Fang, F. Z. (2015). A multiscale modeling approach for fast prediction of part distortion in selective laser melting. Journal of Materials Processing Technology, 229(March), 703–712. https://doi.org/10.1016/j.jmatprotec.2015.10.022
  • Linsey, J. S., Clauss, E. F., Kurtoglu, T., Murphy, J. T., Wood, K. L., & Markman, A. B. (2011). An experimental study of group idea generation techniques: Understanding the roles of idea representation and viewing methods. Journal of Mechanical Design, 133(3), 031008. https://doi.org/10.1115/1.4003498
  • Lippert, B., Leuteritz, G., & Lachmayer, R. (2017). An approach to implement design for additive manufacturing in engineering studies. Proceedings of the International Conference on Engineering Design, Vancouver, Canada, ICED, 5 (DS87-5),51–60.
  • Lopes, A. J., MacDonald, E., & Wicker, R. B. (2012). Integrating stereolithography and direct print technologies for 3D structural electronics fabrication. Rapid Prototyping Journal, 18(2), 129–143. https://doi.org/10.1108/13552541211212113
  • Mathisen, G. E., & Bronnick, K. S. (2009). Creative self-efficacy: An intervention study. International Journal of Educational Research, 48(1), 21–29. https://doi.org/10.1016/j.ijer.2009.02.009
  • Mednick, S. (1968). The remote associates test. The Journal of Creative Behavior, 2(3), 213–214. https://doi.org/10.1002/j.2162-6057.1968.tb00104.x
  • Mehta, P. U., & Berdanier, C. (2019). A systematic review of additive manufacturing education : Toward engineering education research in AM. 2019 ASEE Annual Conference & Exposition, Tampa, USA. https://peer.asee.org/32006
  • Meisel, N., & Williams, C. (2015). An investigation of key design for additive manufacturing constraints in multimaterial three-dimensional printing. Journal of Mechanical Design, 137(11), 111406. https://doi.org/10.1115/1.4030991
  • Mohammed, M. I. P., Fitzpatrick, A., & Gibson, I. (2017). Customised design of a patient specific 3D printed whole mandible implant. KnE Engineering, 2(2), 104. https://doi.org/10.18502/keg.v2i2.602
  • Moylan, S., Slowinski, J., Cooke, A., Jurrens, K., & Donmez, M. A. (2012). Proposal for a standardized test artifact for additive. Proceedings of the 23th International Solid Freeform Fabrication Symposium, Austin, TX, USA, 902–920.
  • Multon, K. D., Brown, S. D., & Lent, R. W. (1991). Relation of self-efficacy beliefs to academic outcomes: A meta-analytic investigation. Journal of Counseling Psychology, 38(1), 30–38. https://doi.org/10.1037/0022-0167.38.1.30
  • Murr, L. E., Gaytan, S. M., Medina, F., Lopez, H., Martinez, E., Machado, B. I., Hernandez, D. H., Martinez, L., Lopez, M. I., Wicker, R. B., & Bracke, J. (2010). Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1917), 1999–2032. https://doi.org/10.1098/rsta.2010.0010
  • Nelson, B. A., Wilson, J. O., Rosen, D., & Yen, J. (2009). Refined metrics for measuring ideation effectiveness. Design Studies, 30(6), 737–743. https://doi.org/10.1016/j.destud.2009.07.002
  • Nickel, A. H., Barnett, D. M., & Prinz, F. B. (2001). Thermal stresses and deposition patterns in layered manufacturing. Materials Science and Engineering A, 317(1–2), 59–64. https://doi.org/10.1016/S0921-5093(01)01179-0
  • Oman, S. K., Tumer, I. Y., Wood, K., & Seepersad, C. (2013). A comparison of creativity and innovation metrics and sample validation through in-class design projects. Research in Engineering Design, 24(1), 65–92. https://doi.org/10.1007/s00163-012-0138-9
  • Omidvarkarjan, D., Cipriano, D., Rosenbauer, R., Biedermann, M., & Meboldt, M. (2020). Implementation of a design support tool for additive manufacturing using a feature database: An industrial case study. Progress in Additive Manufacturing, 5(1), 67–73. https://doi.org/10.1007/s40964-020-00119-5
  • Over-The-Wall Design Process | New Product Design. (n.d.). Retrieved November 16, 2017, from http://npdbook.com/introduction-to-stage-gate-method/the-era-of-specialization-and-over-the-wall-design/
  • Pallari, J. H. P., Dalgarno, K. W., & Woodburn, J. (2010). Mass customization of foot orthoses for rheumatoid arthritis using selective laser sintering. IEEE Transactions on Biomedical Engineering, 57(7), 1750–1756. https://doi.org/10.1109/TBME.2010.2044178
  • Penn State Additive Manufacturing and Design Master’s Degree Program. (n.d.). Retrieved April 29, 2019, from https://www.amdprogram.psu.edu/
  • Perez, K. B., Anderson, D. S., Hölttä-Otto, K., & Wood, K. L. (2015). Crowdsourced design principles for leveraging the capabilities of additive manufacturing. International Conference of Engineerring Design, Milan, Italy, July, 1–10.
  • Perez, K. B., Hilburn, S., Jensen, D., & Wood, K. L. (2019). Design principle-based stimuli for improving creativity during ideation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(2), 493–503. https://doi.org/10.1177/0954406218809117
  • Perez, K. B., Lauff, C. A., Camburn, B. A., & Wood, K. L. (2019). Design innovation with additive manufacturing: A methodology. Volume 7: 31st International Conference on Design Theory and Methodology, Anaheim, California, USA, 7, 1–11. https://doi.org/10.1115/DETC2019-97400
  • Prabhu, R., Miller, S. R., Simpson, T. W., & Meisel, N. A. (2018). The earlier the better? Investigating the importance of timing on effectiveness of design for additive manufacturing education. Volume 2A: 44th Design Automation Conference, Quebec City, Quebec, Canada, 1–14. https://doi.org/10.1115/DETC2018-85953
  • Prabhu, R., Miller, S. R., Simpson, T. W., & Meisel, N. A. (2020a). Complex solutions for complex problems? Exploring the role of design task choice on learning, design for additive manufacturing use, and creativity. Journal of Mechanical Design, 142(3). https://doi.org/10.1115/1.4045127
  • Prabhu, R., Miller, S. R., Simpson, T. W., & Meisel, N. A. (2020b). Exploring the effects of additive manufacturing education on students’ engineering design process and its outcomes. Journal of Mechanical Design, 142(4), 1. https://doi.org/10.1115/1.4044324
  • Prabhu, R., Miller, S. R., Simpson, T. W., & Meisel, N. A. (2020c). But will it build? Assessing student engineering designers’ use of design for additive manufacturing considerations in design outcomes. Journal of Mechanical Design, 142(9), 1–56. https://doi.org/10.1115/1.4046071
  • Prabhu, R., Miller, S. R., Simpson, T. W., & Meisel, N. A. (2020d). Teaching design freedom: Understanding the effects of variations in design for additive manufacturing education on students’ creativity. Journal of Mechanical Design, 142(9), 1–27. https://doi.org/10.1115/1.4046065
  • Pradel, P., Zhu, Z., Bibb, R., & Moultrie, J. (2018). Investigation of design for additive manufacturing in professional design practice. Journal of Engineering Design, 29(4–5), 165–200. https://doi.org/10.1080/09544828.2018.1454589
  • Quade, A. (2003). Development and validation of a computer science self-efficacy scale for CS0 courses and the group analysis of CS0 student self-efficacy. Proceedings ITCC 2003, International Conference on Information Technology: Computers and Communications, Las Vegas, NV, USA, 60–64. https://doi.org/10.1109/ITCC.2003.1197500
  • Renishaw Inc. (2017). Digital evolution of cranial surgery. https://www.renishaw.com/en/digital-evolution-of-cranial-surgery–38602
  • Renjith, S. C., Park, K., & Okudan Kremer, G. E. (2020). A design framework for additive manufacturing: Integration of additive manufacturing capabilities in the early design process. International Journal of Precision Engineering and Manufacturing, 21(2), 329–345. https://doi.org/10.1007/s12541-019-00253-3
  • Rias, A. L., Bouchard, C., Segonds, F., & Abed, S. (2016). Design for additive manufacturing: A creative approach. International Design Conference - DESIGN 2016, Cavtat, Dubrovnik, Croatia, May, 411–420. https://doi.org/10.1007/978-3-319-55128-9_5
  • Rias, A. L., Bouchard, C., Segonds, F., Vayre, B., & Abed, S. (2017). Design for Additive Manufacturing: Supporting Intrinsic-Motivated Creativity. In: Fukuda S. (eds) Emotional Engineering, Vol.5. Springer, Cham. https://doi.org/10.1007/978-3-319-53195-3.
  • Rias, A. L., Segonds, F., Bouchard, C., & Abed, S. (2017). Towards additive manufacturing of intermediate objects (AMIO) for concepts generation. International Journal on Interactive Design and Manufacturing, 11(2), 301–315. https://doi.org/10.1007/s12008-017-0369-0
  • Richter, T., Schumacher, F., Watschke, H., & Vietor, T. (2017). Product model-based identification of potentials of additive manufacturing in the design process. DFX 2017: Proceedings of the 28th Symposium Design for X, Bamburg, Germany, October, 177–190.
  • Richter, T., Watschke, H., Schumacher, F., & Vietor, T. (2018). Exploitation of potentials of additive manufacturing in ideation workshops. Proceedings of The Fifth International Conference on Design Creativity (ICDC 2018), University of Bath, Bath, UK, February, 1–8.
  • Rosen, D. W. (2007). Computer-aided design for additive manufacturing of cellular structures. Computer-Aided Design and Applications, 4(1–6), 585–594. https://doi.org/10.1080/16864360.2007.10738493
  • Schmelzle, J., Kline, E. V., Dickman, C. J., Reutzel, E. W., Jones, G., & Simpson, T. W. (2015). (Re)designing for part consolidation: Understanding the challenges of metal additive manufacturing. Journal of Mechanical Design, 137(11), 111404. https://doi.org/10.1115/1.4031156
  • Schumacher, F., Watschke, H., Kuschmitz, S., & Vietor, T. (2019). Goal oriented provision of design principles for additive manufacturing to support conceptual design. Proceedings of the Design Society: International Conference on Engineering Design, 1(1), 749–758. https://doi.org/10.1017/dsi.2019.79
  • Seepersad, C. C., Allison, J., & Sharpe, C. (2017). The need for effective design guides in additive manufacturing. Proceedings of the 21st International Conference on Engineering Design (ICED17), Vancouver, Canada, 5(August), 309–316. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029790657&partnerID=40&md5=47e1f9dfba3dfef0f59b45bec8b54b35
  • Seepersad, C. C., Govett, T., Kim, K., Lundin, M., & Pinero, D. (2012). A designer’s guide for dimensioning and tolerancing SLS parts. 23rd Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, Austin, TX, USA, SFF 2012, 921–931.
  • Shah, J., Vargas-Hernandez, N., & Smith, S. M. (2003). Metrics for measuring ideation effectiveness. Design Studies, 24(2), 111–134. https://doi.org/10.1016/S0142-694X(02)00034-0
  • Shin, S. J., & Zhou, J. (2007). When is educational specialization heterogeneity related to creativity in research and development teams? Transformational leadership as a moderator. Journal of Applied Psychology, 92(6), 1709–1721. https://doi.org/10.1037/0021-9010.92.6.1709
  • Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86(2), 420–428. https://doi.org/10.1037/0033-2909.86.2.420
  • Silvia, P. J., Winterstein, B. P., Willse, J. T., Barona, C. M., Cram, J. T., Hess, K. I., Martinez, J. L., & Richard, C. A. (2008). Assessing creativity with divergent thinking tasks: Exploring the reliability and validity of new subjective scoring methods. Psychology of Aesthetics, Creativity, and the Arts, 2(2), 68–85. https://doi.org/10.1037/1931-3896.2.2.68
  • Simpson, T. W., Williams, C. B., & Hripko, M. (2017). Preparing industry for additive manufacturing and its applications: Summary & recommendations from a national science foundation workshop. Additive Manufacturing, 13(January), 166–178. https://doi.org/10.1016/j.addma.2016.08.002
  • Sinha, S., Chen, H.-E., Meisel, N. A., & Miller, S. R. (2017). Does designing for additive manufacturing help us be more creative? An exploration in engineering design education. Volume 3: 19th International Conference on Advanced Vehicle Technologies; 14th International Conference on Design Education; 10th Frontiers in Biomedical Devices, Cleveland, Ohio, USA, 3, 1–12. https://doi.org/10.1115/DETC2017-68274
  • Smith, H. (2013). 3D printing news and trends: GE aviation to grow better fuel nozzles using 3D printing. 3D Printing News and Trends. http://3dprintingreviews.blogspot.co.uk/2013/06/ge-aviation-to-grow-better-fuel-nozzles.html
  • Strano, G., Hao, L., Everson, R. M., & Evans, K. E. (2013). A new approach to the design and optimisation of support structures in additive manufacturing. International Journal of Advanced Manufacturing Technology, 66(9–12), 1247–1254. https://doi.org/10.1007/s00170-012-4403-x
  • Thomas-Seale, L. E. J., Kirkman-Brown, J. C., Attallah, M. M., Espino, D. M., & Shepherd, D. E. T. (2018). The barriers to the progression of additive manufacture: Perspectives from UK industry. International Journal of Production Economics, 198(February2017), 104–118. https://doi.org/10.1016/j.ijpe.2018.02.003
  • Thompson, M. K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R. I., Gibson, I., Bernard, A., Schulz, J., Graf, P., Ahuja, B., & Martina, F. (2016). Design for additive manufacturing: Trends, opportunities, considerations, and constraints. CIRP Annals - Manufacturing Technology, 65(2), 737–760. https://doi.org/10.1016/j.cirp.2016.05.004
  • Tierney, P., & Farmer, S. M. (2002). Creative self-efficacy : Its potential antecedents and relationship to creative performance. The Academy of Management Journal, 45(6), 1137–1148. https://doi.org/10.5465/3069429
  • Tierney, P., & Farmer, S. M. (2004). The Pygmalion process and employee creativity. Journal of Management, 30(3), 413–432. https://doi.org/10.1016/j.jm.2002.12.001
  • Tierney, P., & Farmer, S. M. (2011). Creative self-efficacy development and creative performance over time. Journal of Applied Psychology, 96(2), 277–293. https://doi.org/10.1037/a0020952
  • Torrance, E. P., Ball, O. E., & Safter, H. T. (1966). Torrance tests of creative thinking. Scholastic Testing Service.
  • Tuck, C. J., Hague, R. J. M., Ruffo, M., Ransley, M., & Adams, P. (2008). Rapid manufacturing facilitated customization. International Journal of Computer Integrated Manufacturing, 21(3), 245–258. https://doi.org/10.1080/09511920701216238
  • Turnbull, A., Maxwell, A. S., & Pillai, S. (1999). Residual stress in polymers - evaluation of measurement techniques. Journal of Materials Science, 34(3), 451–459. https://doi.org/10.1023/A:1004574024319
  • Umaras, E., & Tsuzuki, M. S. G. (2017). Additive manufacturing - considerations on geometric accuracy and factors of influence. IFAC-PapersOnLine, 50(1), 14940–14945. https://doi.org/10.1016/j.ifacol.2017.08.2545
  • Wicker, R. B., & MacDonald, E. W. (2012). Multi-material, multi-technology stereolithography: This feature article covers a decade of research into tackling one of the major challenges of the stereolithography technique, which is including multiple materials in one construct. Virtual and Physical Prototyping, 7(3), 181–194. https://doi.org/10.1080/17452759.2012.721119
  • Williams, C. B., & Seepersad, C. C. (2012). Design for additive manufacturing curriculum: A problem-and project-based approach. International Solid Freeform Fabrication Symposium, Austin, TX, USA, 81–92. https://doi.org/10.1007/978-1-4419-1120-9_11
  • Williams, C. B., Sturm, L., & Wicks, A. E. (2015). Advancing student learning of design for additive manufacturing principles through an extracurricular vehicle design competition. Volume 3: 17th International Conference on Advanced Vehicle Technologies; 12th International Conference on Design Education; 8th Frontiers in Biomedical Devices, Boston, Massachusetts, USA, 1–8. https://doi.org/10.1115/DETC2015-47622
  • Yang, L. (2018). Education of additive manufacturing – An attempt to inspire research. Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, Austin, TX, USA, 44–54.
  • Yang, S., Page, T., & Zhao, Y. F. (2018). Understanding the role of additive manufacturing knowledge in stimulating design innovation for novice designers. Journal of Mechanical Design, 141(2), 021703. https://doi.org/10.1115/1.4041928
  • Zhu, Z., Dhokia, V., Nassehi, A., & Newman, S. T. (2016). Investigation of part distortions as a result of hybrid manufacturing. Robotics and Computer-Integrated Manufacturing, 37(February), 23–32. https://doi.org/10.1016/j.rcim.2015.06.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.