794
Views
47
CrossRef citations to date
0
Altmetric
Articles

Influence of slag composition on the hydration of alkali-activated slags

, , , , &
Pages 85-100 | Received 19 May 2014, Accepted 09 Aug 2014, Published online: 27 Oct 2014

References

  • Gartner E. Industrially interesting approaches to “low-CO2” cements. Cem. Concr. Res. 2004;34:1489–1498.10.1016/j.cemconres.2004.01.021
  • Damtoft JS, Lukasik J, Herfort D, Sorrentino D, Gartner EM. Sustainable development and climate change initiatives. Cem. Concr. Res. 2008;38:115–127.10.1016/j.cemconres.2007.09.008
  • Schneider M, Romer M, Tschudin M, Bolio H. Sustainable cement production—present and future. Cem. Concr. Res. 2011;41:642–650.10.1016/j.cemconres.2011.03.019
  • Shi C, Jiménez A, Palomo A. New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem. Concr. Res. 2011;41:750–763.10.1016/j.cemconres.2011.03.016
  • Juenger MCG, Winnefeld F, Provis JL, Ideker JH. Advances in alternative cementitious binders. Cem. Concr. Res. 2011;41:1232–1243.10.1016/j.cemconres.2010.11.012
  • Lothenbach B, Scrivener K, Hooton RD. Supplementary cementitious materials. Cem. Concr. Res. 2011;41:1244–1256.10.1016/j.cemconres.2010.12.001
  • Pacheco-Torgal F, Castro-Gomes J, Jalali S. Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr. Build. Mater. 2008;22:1305–1314.10.1016/j.conbuildmat.2007.10.015
  • Pacheco-Torgal F, Castro-Gomes J, Jalali S. Alkali-activated binders: A review. Part 2. About materials and binders manufacture. Constr. Build. Mater. 2008;22:1315–1322.10.1016/j.conbuildmat.2007.03.019
  • Davidovits J. Geopolymers. J. Thermal Anal. 1991;37:1633–1656.10.1007/BF01912193
  • Krivenko PV. Alkaline cements. In: 9th International Congress on the Chemistry of Cements. Vol. IV; New Delhi (India); 1992. p. 482–488.
  • Wang S-D, Pu X-C, Scrivener KL, Pratt PL. Alkali-activated slag cement and concrete: a review of properties and problems. Adv. Cem. Res. 1995;7:93–102.10.1680/adcr.1995.7.27.93
  • Duxson P, Provis JL, Lukey GC, van Deventer JS. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 2007;37:1590–1597.10.1016/j.cemconres.2007.08.018
  • Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ. Geopolymer technology: the current state of the art. J. Mater. Sci. 2007;42:2917–2933.10.1007/s10853-006-0637-z
  • van Deventer JSJ, Provis JL, Duxson P, Brice DG. Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste Biomass Valoriz. 2010;1:145–155.10.1007/s12649-010-9015-9
  • Provis JL. Geopolymers and other alkali activated materials: why, how, and what? Mater. Struct. 2014;47:11–25.10.1617/s11527-013-0211-5
  • Talling B, Brandstetr J. Present state and future of alkali-activated slag concretes. In: Malhotra VM, editor. 3rd CANMET/ACI Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete; Trondheim (Norway); 1989. p. 1519–1545.
  • Talling B, Krivenko P. Blast furnace slag – the ultimate binder. In Chandra S. Waste materials used in concrete manufacturing. Westwood (NJ): Noyes Publications; 1997. p. 235–289.
  • Shi C, Krivenko PV, Roy D. Alkali-activated cements and concretes. New York (NY): Taylor & Francis; 2006.10.4324/9780203390672
  • Bernal SA, Provis JL, Fernández-Jiménez A, Krivenko PV, Kavalerova E, Palacios M, Shi C. Binder chemistry – high-calcium alkali-activated materials. In: Provis JL, van Deventer JSJ, editors. Alkali-activated materials: state-of-the-art report, RILEM TC 224-AAM. Dordrecht: Springer/RILEM; 2014. p. 59–91.
  • Fernández-Jiménez A, Puertas F. Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements. Adv. Cem. Res. 2003;15:129–136.10.1680/adcr.2003.15.3.129
  • Fernández-Jiménez A, Palomo JG, Puertas F. Alkali-activated slag mortars: Mechanical strength behaviour. Cem. Concr. Res. 1999;29:1313– 1321.10.1016/S0008-8846(99)00154-4
  • Brough AR, Atkinson A. Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure. Cem. Concr. Res. 2002;32:865–879.10.1016/S0008-8846(02)00717-2
  • Escalante-García JI, Fuentes AF, Gorokhovsky A, Fraire-Luna PE, Mendoza-Suarez G. Hydration products and reactivity of blast-furnace slag activated by various alkalis. J. Am Ceram. Soc. 2003;86:2148–2153.10.1111/jace.2003.86.issue-12
  • Burciaga-Díaz O, Escalante-García JI. Structure, mechanisms of reaction, and strength of an alkali-activated blast-furnace slag. J. Am. Ceram. Soc. 2013;96:3939–9948.10.1111/jace.2013.96.issue-12
  • Ben Haha M, Le Saout G, Winnefeld F, Lothenbach B. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem. Concr. Res. 2011;41:301–310.10.1016/j.cemconres.2010.11.016
  • Ben Haha M, Lothenbach B, Le Saout G, Winnefeld F. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO. Cem. Concr. Res. 2011;41:955–963.
  • Ben Haha M, Lothenbach B, Le Saout G, Winnefeld F. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part II: Effect of Al2O3. Cem. Concr. Res. 2012;42:74–83.
  • Gruskovnjak A, Lothenbach B, Holzer L, Figi R, Winnefeld F. Hydration of alkali-activated slag: comparison with ordinary Portland cement. Adv. Cem. Res. 2006;18:119–128.10.1680/adcr.2006.18.3.119
  • Le Saoût G, Ben Haha M, Winnefeld F, Lothenbach B. Hydration degree of alkali-activated slags: A 29Si NMR study. J. Am. Ceram. Soc. 2011;94:4541–4547.10.1111/j.1551-2916.2011.04828.x
  • Bernal SA, San Nicolas R, Myers RJ, Mejía de Gutiérrez R, Puertas F, van Deventer JSJ, Provis JL. MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cem. Concr. Res. 2014;57:33–43.10.1016/j.cemconres.2013.12.003
  • Lothenbach B, Gruskovnjak A. Hydration of alkali-activated slag: thermodynamic modelling. Adv. Cem. Res. 2007;19:81–92.10.1680/adcr.2007.19.2.81
  • Puertas F, Martı́nez-Ramı́rez S, Alonso S, Vázquez T. Alkali-activated fly ash/slag cements: Strength behaviour and hydration products. Cem. Concr. Res. 2000;30:1625–1632.10.1016/S0008-8846(00)00298-2
  • Puertas F, Fernández-Jiménez A. Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes. Cem. Concr. Compos. 2003;25:287–292.10.1016/S0958-9465(02)00059-8
  • Stephan D, Tänzer R, Schmidt M. Alkali activation – an alternative to cements that contain clinker; part 1. Cem. Int. 2010;8(1):72–85.
  • Stephan D, Tänzer R, Schmidt M. Alkali activation – an alternative to cements that contain clinker; part 2. Cem. Int. 2010;8(2):74–81.
  • Shi C, Li Y. Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement. Cem. Concr. Res. 1989;19:527–533.
  • Wang S-D, Scrivener KL, Pratt PL. Hydration products of alkali activated slag cement. Cem. Concr. Res. 1994;24:1033–1043.10.1016/0008-8846(94)90026-4
  • Wang S-D, Scrivener KL. Hydration products of alkali activated slag cement. Cem. Concr. Res. 1995;25:561–571.10.1016/0008-8846(95)00045-E
  • Dron R. Structure and reactivity of glassy slags. In: 8th International Congress on the Chemistry of Cement. Vol. IV, 3; Rio de Janeiro (Brasil); 1986. p. 81–85.
  • Ehrenberg A, Israel D, Kühn A, Ludwig H-M, Tigges V, Wassing W. Granulated blastfurnace slag: reaction potential and production of optimized cements, part 1. Cem. Int. 2008;6(2):90–96.
  • Ehrenberg A, Israel D, Kühn A, Ludwig H-M, Tigges V, Wassing W. Granulated blastfurnace slag: reaction potential and production of optimized cements, part 2. Cem. Int. 2008;6(3):82–92.
  • Ehrenberg A. Hüttensand – Ein leistungsfähiger Baustoff mit Tradition und Zukunft, Teil 1 (Granulated blastfurnace slag – a high-performance construction material with tradition and future, part 1). Beton-Informationen. 2006;4:35–63.
  • Ehrenberg A. Hüttensand – Ein leistungsfähiger Baustoff mit Tradition und Zukunft, Teil 2 (Granulated blastfurnace slag – a high-performance construction material with tradition and future, part 2). Beton-Informationen. 2006;5:67–95.
  • Kocaba V. Development and evaluation of methods to follow microstructural development of cementitious systems including slags [PhD thesis]. EPF Lausanne (Switzerland); 2009.
  • Keil F. Hochofenschlacke (Granulated blastfurnace slag). Düsseldorf (Germany): Verlag Stahleisen m.b.H; 1963.
  • Lang E. Blastfurnace cements. In: Bensted J, Barnes P, editors. Structure and Performance of Cements. 2nd ed. London (UK): Spon Press; 2002. p. 310–325.
  • Schwiete H-E, Dölbor F-C. Einfluß der Abkühlungsbedingungen und der chemischen Zusammensetzung auf die hydraulischen Eigenschaften von Hämatitschlacken (Influence of the cooling conditions and the chemical composition on the hydraulice properties of hematite slags). Forschungsberichte des Landes Nordrhein-Westfalen. No. 1186; Cologne (Germany); 1963.
  • Smolczyk HG. Slag structure and identification of slags. In: 7th International Congress on the Chemistry of Cement. Vol. I; Paris, France; 1980. p. III-1/4–III-1/17.
  • Wassing W, Tigges VE. The significance of the silicate in granulated blastfurnace slags for the early strength of blastfurnace cement mortars and concretes. Cem. Int. 2008;6(2):98–109.
  • Wassing W, Tigges VE. Improving the eraly strength of blastfurnace cement mortars and concretes by fixation of calcium silicate hydrogels with reactive aluminates. Cem. Int. 2008;6(5):62–79.
  • Wassing W. Relationship between the chemical reactivity of granulated blastfurnace slags and the mortar standard compressive strength of the blastfurnace cements produced from them. Cem. Int. 2003;1(5):94–109.
  • Demoulian E, Gourdin P, Hawthorn F, Vernet C. Influence of slag chemical composition and texture on their hydraulicity. In: 7th International Conference on the Chemistry of Cement. Vol. II; Paris (France); 1980. p. III-89–III-94.
  • Smolczyk HG. The effect of the chemistry of the slag on the strengths of the blastfurnace cements. Zement-Kalk-Gips. 1978;31:294–296.
  • Kollo H, Geiseler J. Beurteilung der Qualität von Hüttensand anhand von Kennwerten (Quality assessment of blastfurnace slag using characteristic values). Beton-Informationen. 1987;27:48–51.
  • Douglas E, Brandstetr J. A preliminary study on the alkali activation of ground granulated blast-furnace slag. Cem. Concr. Res. 1990;20:746–756.10.1016/0008-8846(90)90008-L
  • European Standard EN 197-1. Cement – Part 1: Composition, specifications and conformity criteria for common cements; 2011.
  • Sakulich AR, Anderson E, Schauer CL, Barsoum MW. Influence of Si:Al ratio on the microstructural and mechanical properties of a fine-limestone aggregate alkali-activated slag concrete. Mater. Struct. 2010;43:1025–1035.10.1617/s11527-009-9563-2
  • Tänzer R, Stephan D, Ehrenberg A. Vergleich unterschiedlicher Hüttensande hinsichtlich ihrer Anregbarkeit durch Portlandzement und alternative alkalische Anreger (Comparison of different blastfurnace slags regarding their activation using Portland cement and alternative alkaline activators). In: Ludwig H-M, editor. 18. Internationale Baustofftagung (ibausil). Vol. 1; Weimar (Germany); 2012. p. 482–489.
  • Ben Haha M, De Weerdt K, Lothenbach B. Quantification of the degree of reaction of fly ash. Cem. Concr. Res. 2010;40:1620–1629.
  • Scrivener KL. Backscattered electron imaging of cementitious microstructures: understanding and quantification. Cem. Concr. Compos. 2004;26:935–945.10.1016/j.cemconcomp.2004.02.029
  • Kulik DA, Wagner T, Dmytrieva SV, Kosakowski G, Hingerl FF, Chudnenko kV, Berner U. GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Comput. Geosci. 2013;17:1–24.
  • Wagner T, Kulik DA, Hingerl FF, Dmytrieva SV. GEM-Selektor geochemical modeling package: TSolMod library and data interface for multicomponent phase models. Can. Mineral. 2012;50:1173–1195.10.3749/canmin.50.5.1173
  • Lothenbach B, Matschei T, Möschner G, Glasser F. Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cem. Concr. Res. 2008;38:1–18.10.1016/j.cemconres.2007.08.017
  • Matschei T, Lothenbach B, Glasser F. Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O. Cem. Concr. Res. 2007;37:1379–1410.10.1016/j.cemconres.2007.06.002
  • Kühl H. Die hydraulische Erregung granulierter Hochofenschlacken (The hydraulic activation of granulated blastfurnace slags). Zement. 1923;12:320–322.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.