270
Views
8
CrossRef citations to date
0
Altmetric
Articles

Estimation of the yield stress and distribution of large aggregates from slump flow test of self-compacting concrete mixes using smooth particle hydrodynamics simulation

, &
Pages 117-134 | Received 26 Aug 2014, Accepted 16 Oct 2014, Published online: 17 Nov 2014

References

  • Ghanbari A, Karihaloo BL. Prediction of the plastic viscosity of self-compacting steel fibre reinforced concrete. Cem. Concr. Res. 2009;39:1209–1216.10.1016/j.cemconres.2009.08.018
  • Phan-Thien N, Huilgol RR. A micromechanic theory of chopped-fibre-reinforced materials. J. Fibre Sci. Technol. 1980;13:423–433.10.1016/0015-0568(80)90033-0
  • Krieger IM, Dougherty TJ. A mechanism for non-Newtonian flow in suspensions of rigid spheres. J. Rheol. 1959;3:137–152.10.1122/1.548848
  • Frankel NA, Acrivos A. On the viscosity of a concentrated suspension of solid spheres. Chem. Eng. Sci. 1967;22:847–853.10.1016/0009-2509(67)80149-0
  • Chong JS, Christiansen EB, Baer AD. Rheology of concentrated suspensions. J. Appl. Polym. Sci. 1971;15:2007–2021.10.1002/app.1971.070150818
  • de Kruif CG, van Iersel EMF, Vrij A, Russel WB. Hard sphere colloidal dispersions: viscosity as a function of shear rate and volume fraction, J. Chem. Phys. 1985;AIP:4717–4725.10.1063/1.448997
  • Heirman G, Vandewalle L, Van Gemert D, Wallevik Ó. Integration approach of the Couette inverse problem of powder type self-compacting concrete in a wide-gap concentric cylinder rheometer. J. Non-Newtonian Fluid Mech. 2008;150:93–103.10.1016/j.jnnfm.2007.10.003
  • Sun Z, Voigt T, Shah SP. Rheometric and ultrasonic investigations of viscoelastic properties of fresh Portland cement pastes. Cem. Concr. Res. 2006;36:278–287.10.1016/j.cemconres.2005.08.007
  • Grzeszczyk S, Lipowski G. Effect of content and particle size distribution of high-calcium fly ash on the rheological properties of cement pastes. Cem. Concr. Res. 1997;27:907–916.10.1016/S0008-8846(97)00073-2
  • Nehdi M, Rahman MA. Estimating rheological properties of cement pastes using various rheological models for different test geometry, gap and surface friction. Cem. Concr. Res. 2004;34:1993–2007.10.1016/j.cemconres.2004.02.020
  • Kulasegaram S, Karihaloo BL, Ghanbari A. Modelling the flow of self-compacting concrete. Int. J. Numer. Anal. Methods Geomech. 2011;35:713–723.10.1002/nag.v35.6
  • Kulasegaram S, Karihaloo BL. Fibre-reinforced, self-compacting concrete flow modelled by SPH. Proc. ICE Eng. Comput. Mech. 2013;166:22–31.10.1680/eacm.11.00004
  • Deeb R, Kulasegaram S, Karihaloo BL. 3D modelling of the flow of self-compacting concrete with or without steel fibres. Part I: slump flow test. J. Comput. Part. Methods 2014. doi:10.1007/s40571-014-0002-y.
  • Deeb R, Kulasegaram S, Karihaloo BL. 3D modelling of the flow of self-compacting concrete with or without steel fibres. Part II: L-box test and the assessment of fibre reorientation during the flow. J. Comput. Part. Methods 2014. doi:10.1007/s40571-014-0003-x.
  • Wu J, Shu C. An improved boundary-lattice Boltzmann method for simulating three-dimensional incompressible flows. J. Comput. Phys. 2010;229:5022–5042.10.1016/j.jcp.2010.03.024
  • Svec O, Skocek J, Stang H, Geiker MR, Roussel N. Free surface flow of a suspension of rigid particles in a non-Newtonian fluid: A lattice Boltzmann approach. J. Non-Newtonian Fluid Mech. 2012;179–180:32–42.10.1016/j.jnnfm.2012.05.005
  • Baaijens FPT. A fictitious domain/mortar element method for fluid–structure interaction. Int. J. Numer. Methods Fluids. 2001;35:743–761.10.1002/(ISSN)1097-0363
  • Deeb R, Kulasegaram S, Karihaloo BL. Reorientation of short steel fibres during the flow of self-compacting concrete mix and determination of the fibre orientation factor. Cem. Concr. Res. 2014;56:112–120.10.1016/j.cemconres.2013.10.002
  • Deeb R, Ghanbari A, Karihaloo BL. Development of self-compacting high and ultra-high performance concretes with and without steel fibres. Cem. Concr. Compos. 2012;34:185–190.10.1016/j.cemconcomp.2011.11.001
  • Karihaloo BL, Ghanbari A. Mix proportioning of self-compacting high and ultra-high performance concretes with and without steel fibres. Mag. Concr. Res. 2012;64:1089–1100.10.1680/macr.11.00190
  • Deeb R, Karihaloo BL. Mix proportioning of self-compacting normal and high strength concretes. Mag. Concr. Res. 2013;65:546–556.10.1680/macr.12.00164
  • BS EN 12350. Testing fresh concrete self-compacting concrete; parts 8, 10 and 12; 2010. British Standards Institute, London.
  • BS EN 206-9. Additional rules for self-compacting concrete (SCC); 2010. British Standards Institute, London.
  • Papanastasiou TC. Flows of materials with yield. J. Rheol. 1987;31:385–404.10.1122/1.549926
  • Chorin A. Numerical solution of the Navier-Stokes equations. Math. Comput. 1968;22:745–745.10.1090/S0025-5718-1968-0242392-2
  • Cummins SJ, Rudman M. An SPH projection method. J. Comput. Phys. 1999;152:584–607.10.1006/jcph.1999.6246
  • Koshizuka S, Nobe A, Oka Y. Numerical analysis of breaking waves using moving particle semi-implicit method. Int. J. Numer. Methods Fluids 1998;26:751–769.10.1002/(ISSN)1097-0363

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.