653
Views
28
CrossRef citations to date
0
Altmetric
Articles

Compressive strength and microstructure evolution of low calcium brown coal fly ash-based geopolymer

, , , &

References

  • Schneider M, Romer M, Tschudin M, et al. Sustainable cement production-present and future. Cem Concr Res. 2011;41(7):642–650.
  • USGS. Cement statistics. In: Kelly TD, Matos GR, editors. Historical statistics for mineral and material commodities in the United States, U.S. Geological Survey Data Series, p. 140. U.S. Geological Survey. USA: USGS Mineral Commodity Specialist. Available from: https://minerals.usgs.gov/minerals/pubs/historical-statistics/2019
  • Statista. Worldwide cement production. In: Garside M, editor. USA: USGS Mineral Commodity Specialist. Available from https://www.statista.com/statistics/267364/world-cement-production-by-country/ [last edited 2019 Mar 19].
  • Meyer C. The greening of the concrete industry. Cem Concr Compos. 2009;31(8):601–605.
  • Gunasekera C, Setunge S, Law DW. Correlations between mechanical properties of low-calcium fly ash geopolymer concretes. J Mater Civil Eng. 2017;29(9):04017111.
  • Gunasekara C, Setunge S, Law DW. Long-term mechanical properties of different fly ash geopolymers. ACI Struct J. 2017;114(3):743.
  • Un CH, Sanjayan JG, San Nicolas R, et al. Predictions of long-term deflection of geopolymer concrete beams. Constr Build Mater. 2015;94:10–19.
  • Sandanayake M, Gunasekara C, Law D, et al. Greenhouse gas emissions of different fly ash based geopolymer concretes in building construction. J Cleaner Prod. 2018;204:399–408.
  • ASTM International. ASTM C618-15. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken, PA: ASTM International; 2015.
  • Dirgantara R. Development of brown coal fly ash geopolymer concrete in school of engineering. Melbourne, Australia: RMIT University; 2016.
  • Hughes A. Australian resource reviews brown coal 2017. In: Geoscience Australia, editor. Canberra: Geoscience Australia; 2017.
  • Choo TK, Song Y ,Zhang L, et al. Metal extraction by acid leaching of Yallourn brown coal fly ash. Chemeca 2013: Challenging tomorrow.Melbourne, Australia: Chemical Engineering, Monash University; 2013. p. 197.
  • Shi C, Qian J. Increasing coal fly ash use in cement and concrete through chemical activation of reactivity of fly ash. Energy Sources. 2003;25(6):617–628.
  • Shi C, Day RL. Acceleration of the reactivity of fly ash by chemical activation. Cem Concr Res. 1995;25(1):15–21.
  • Gunasekara C, Bhuiyan S, Law D, et al. Corrosion resistance in different fly ash based geopolymer concretes in English. Stockholmes, Noraway: Norwegian Concrete Association; 2017.
  • Gunasekara CM. Influence of properties of fly ash from different sources on the mix design and performance of geopolymer concrete. Australia: RMIT University Melbourne; 2016.
  • Zhuang XY, Chen L, Komarneni S, et al. Fly ash-based geopolymer: clean production, properties and applications. J Cleaner Product. 2016;125:253–267.
  • Zhang Z, Provis JL, Zou J, et al. Toward an indexing approach to evaluate fly ashes for geopolymer manufacture. Cem Concr Res. 2016;85:163–173.
  • Yan S, Sagoe-Crentsil K. Evaluation of fly ash geopolymer mortar incorporating calcined wastepaper sludge. J Sustain Cem Based Mater. 2016;5(6):370–380.
  • Dirgantara R, Gunasekara C, Law DW, et al. Suitability of brown coal fly ash for geopolymer production. J Mater Civil Eng. 2017;29(12):04017247.
  • Bankowski P, Zou L, Hodges R. Reduction of metal leaching in brown coal fly ash using geopolymers. J Hazard Mater. 2004;114(1–3):59–67.
  • Tennakoon C, Sagoe-Crentsil K, Sanjayan JG, et al. Early age properties of alkali activated brown coal fly ash binders. Adv Mater Res. 2014;931–932:457–462.
  • Gunasekara C, Law DW, Setunge S, et al. Zeta potential, gel formation and compressive strength of low calcium fly ash geopolymers. Constr Build Mater. 2015;95(1):592–599.
  • Tennakoon C, Nazari A, Sanjayan JG, et al. Distribution of oxides in fly ash controls strength evolution of geopolymers. Constr Build Mater. 2014;71:72–82.
  • Bhagath Singh GVP, Subramaniam KVL. Effect of active components on strength development in alkali-activated low calcium fly ash cements. J Sustain Cem Based Mater. 2019;8(1):1–19.
  • ASTM International. ASTM C109/C109M-16a. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). West Conshohocken, PA: ASTM International; 2016.
  • Molyneaux T, Law D, Patnaikuni I. Strength of mortar containing activated slag and fly ash. In: 23rd Biennial Conference of the Concrete Institute of Australia: Design Materials and Construction. Adelaide (South Australia): Concrete Institute; 2007.
  • Gunasekara C, Law DW, Setunge S. Long term permeation properties of different fly ash geopolymer concretes. Constr Build Mater. 2016;124:352–362.
  • Hardjito D, Rangan BV. Development and properties of low-calcium fly ash-based geopolymer concrete. Perth (Australia): Curtin University of Technology; 2005.
  • Chindaprasirt P, Chareerat T, Sirivivatnanon V. Workability and strength of coarse high calcium fly ash geopolymer. Cem Concr Compos. 2007;29(3):224–229.
  • Law D, Molyneaux T, Wardhono A, et al. The use of brown coal fly ash to make geopolymer concrete. In: ACCTA 2013. Berlin, Germany: BAM Federal Institute for Materials Research and Testing; 2013.
  • ASTM International. ASTM C1437-15. Standard test method for flow of hydraulic cement mortar. West Conshohocken (PA): ASTM International.
  • El-Hassan H, Ismail N. Effect of process parameters on the performance of fly ash/GGBS blended geopolymer composites. J Sustain Cem Based Mater. 2018;7(2):122–140.
  • Fernández-Jiménez A, de la Torreb AG ,Palomoa A, et al. Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity. Fuel. 2006;85(5–6):625–634.
  • Alvarez-Ayuso E, Querol X, Plana F, et al. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-) combustion fly ashes. J Hazard Mater. 2008;154(1–3):175–183.
  • Riddick TM. Control of colloid stability through zeta potential. Blood. 1968;10(1): 52–68.
  • Zhang Z, Wang H, Provis JL. Quantitative study of the reactivity of fly ash in geopolymerization by FTIR. J Sustain Cem Based Mater. 2012;1(4):154–166.
  • Park S-M, Jang J-G, Chae S-A, et al. An NMR spectroscopic investigation of aluminosilicate gel in alkali-activated fly ash in a CO2-rich environment. Materials. 2016;9(5):308.
  • Fernández-Jiménez A, Palomo A, Sobrados I, et al. The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous Mesoporous Mater. 2006;91(1–3):111–119.
  • Škvára F, Kopecky L, Němeček J, et al. Microstructure of geopolymer materials based on fly ash. Ceram Silikaty. 2006;50(4):208–215.
  • Diaz E, Allouche E, Eklund S. Factors affecting the suitability of fly ash as source material for geopolymers. Fuel. 2010;89(5):992–996.
  • Fernandez-Jimenez A, Palomo A. Characterisation of fly ashes. Potential reactivity as alkaline cements. Fuel. 2003;82(18):2259–2265.
  • Fernandez-Jimenez AM, Palomo A, Lopez-Hombrados C. Engineering properties of alkali-activated fly ash concrete. ACI Mater J. 2006;103(2):106–112.
  • van Jaarsveld JGS, van Deventer JSJ, Lukey GC. The characterisation of source materials in fly ash-based geopolymers. Mater Lett. 2003;57(7):1272–1280.
  • Xu H, Van Deventer JSJ. The geopolymerisation of alumino-silicate minerals. Int J Min Proc. 2000;59(3):247–266.
  • Fernández-Jiménez A, Palomo A, Criado M. Microstructure development of alkali-activated fly ash cement: a descriptive model. Cem Concr Res. 2005;35(6):1204–1209.
  • Tennakoon C, De Silva P, Sagoe-Crentsil K, et al. Influence and role of feedstock Si and Al content in geopolymer synthesis. J Sustain Cem Based Mater. 2015;4(2):129–139.
  • Zheng L, Wang W, Shi YC. The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Chemosphere. 2010;79(6):665–671.
  • Steveson M, Sagoe-Crentsil K. Relationships between composition, structure and strength of inorganic polymers - part 2 - flyash-derived inorganic polymers. J Mater Sci. 2005;40(16):4247–4259.
  • Long W, Xiao B, Zhou B, et al. Research on the internal pores in alkali-activated slag cementing material via X-CT three-dimensional imaging microscopy. In: AIP Conference Proceedings. Bydgoszcz, Poland: AIP Publishing; 2017.
  • Kara I, Tunc D, Sayin F, et al. Study on the performance of metakaolin based geopolymer for Mn (II) and Co (II) removal. Appl Clay Sci. 2018;161:184–193.
  • Gunasekara C, Law DW ,Burgar I, et al. Effect of element distribution on strength in fly ash geopolymers. ACI Mater J. 2017;144(5): 1–10.
  • Reddy MS, Dinakar P, Rao BH. A review of the influence of source material’s oxide composition on the compressive strength of geopolymer concrete. Microporous Mesoporous Mater. 2016;234:12–23.
  • Valcke SLA, Pipilikaki P, Fischer HR, et al. FT-IR and Si-29-NMR for evaluating aluminium-silicate precursors for geopolymers. Mater Struct. 2015;48(3):557–569.
  • Provis JL, van Deventer JSJ. Geopolymerisation kinetics. 1. In situ energy-dispersive X-ray diffractometry. Chem Eng Sci. 2007;62(9):2309–2317.
  • Palomo Á, Alonso S, Fernandez-Jiménez A, et al. Alkaline activation of fly ashes: NMR study of the reaction products. J Am Ceram Soc. 2004;87(6):1141–1145.
  • Rees CA. Mechanisms and kinetics of gel formation in geopolymers. Melbourne, Australia: The University of Melbourne; 2007.
  • Rosas-Casarez CA, et al. Experimental study of XRD, FTIR and TGA techniques in geopolymeric materials. In: Proceedings of the International Conference on Advances in Civil and Structural Engineering—CSE. Kuala Lumpur, Malaysia: Institute of Research Engineers and Doctors; 2014.
  • Ranjbar N, Mehrali M, Alengaram UJ, et al. Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar under elevated temperatures. Constr Build Mater. 2014;65:114–121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.