543
Views
13
CrossRef citations to date
0
Altmetric
Articles

Comparative study of fire-resistant behaviors of high-calcium fly ash geopolymer mortar containing zeolite and mullite

, , ORCID Icon &

References

  • Chindaprasirt P, Chareerat T, Sirivivatnanon V. Workability and strength of coarse high calcium fly ash geopolymer. Cem Concr Compos. 2007;29(3):224–229.
  • Pangdaeng S, Phoo-Ngernkham T, Sata V, et al. Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive. Mater Des. 2014;53:269–274.
  • Phoo-Ngernkham T, Chindaprasirt P, Sata V, et al. Properties of high calcium fly ash geopolymer pastes with Portland cement as an additive. Int J Miner Metall Mater. 2013;20(2):214–220.
  • Hanjitsuwan S, Hunpratub S, Thongbai P, et al. Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste. Cem Concr Compos. 2014;45:9–14.
  • Hussain M, Varely R, Cheng YB, et al. Synthesis and thermal behavior of inorganic-organic hybrid geopolymer composites. J Appl Polym Sci. 2005;96(1):112–121.
  • Ramezanianpour AA, Mousavi R, Kalhori M, et al. Micro and macro level properties of natural zeolite contained concretes. Constr Build Mater. 2015;101:347–358.
  • Shekarchi M, Ahmadi B, Najimi M. Use of natural zeolite as Pozzolanic material in cement and concrete composites. Handbook of natural zeolite. Bentham Science, Bentham E-books; 2012.
  • Ding JT, Yan PY, Liu SL, et al. Extreme vertices design of concrete with combined mineral admixtures. Cem Concr Res. 1999;29(6):957–960.
  • Mehta PK, Feng N-Q, Li G-Z, et al. High-strength and flowing concrete zeolitic mineral admixtures. Cem Concr Aggr. 1990;12(2):61–69.
  • Ahmadi B, Shekarchi M. Use of natural zeolite as a supplementary cementitious material. Cem Concr Compos. 2010;32(2):134–141.
  • Poon CS, Lam L, Kou SC, et al. A study on the hydration rate of natural zeolite blended cement pastes. Constr Build Mater. 1999;13(8):427–432.
  • Canpolat F, Yılmaz K, Köse MM, et al. Use of zeolite, coal bottom ash and fly ash as replacement. Cem Concr Res. 2004;34(5):731–735.
  • Misaelides P. Application of natural zeolites in environmental remediation: a short review. Micropor Mesopor Mat. 2011;144(1–3):15–18.
  • Tummala RR. Ceramic and Glass-Ceramic Packaging in the 1990S. J Am Ceram Soc. 1991;74(5):895–908.
  • Subramanian MA, Corbin DR, Chowdhry U. Better ceramic substrates through zeolites. Bull Mater Sci. 1993;16(6):665–678.
  • Zawrah MFM, Khalil NM. Effect of mullite formation on properties of refractory castables. Ceram Int. 2001;27(6):689–694.
  • Kondru AK, Kumar P, Teng TT, et al. Synthesis and characterization of Na-Y zeolite from coal fly ash and its effectiveness in removal of dye from aqueous solution by wet peroxide oxidation. Arch Environ Sci. 2011;5:46–54.
  • Wattanasiriwech S, Nurgesang AF, Wattanasiriwech D, et al. Characterisation and properties of geopolymer composite part 1: role of mullite reinforcement. Ceram Int. 2017;43:16055–16062.
  • American Society for Testing and Materials. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM C618-15. Book of Standards Volume: 04.02: Developed by Subcommittee C09.24; 2015.
  • Wongsa A, Boonserm K, Waisurasingha C, et al. Use of municipal solid waste incinerator (MSWI) bottom ash in high calcium fly ash geopolymer matrix. J Clean Prod. 2017;148:49–59.
  • Chen JJ, Ng PL, Kwan AKH, et al. Lowering cement content in mortar by adding superfine zeolite as cement replacement and optimizing mixture proportions. J Clean Prod. 2019;210:66–76.
  • Mola AH, Saberian M, Li J. Prediction of compressive and tensile strengths of zeolite-cemented sand using porosity and composition. Constr Build Mater. 2019;202:784–795.
  • Ávalos-Rendón TL, Chelala EAP, Mendoza ECJ, et al. Synthesis of belite cements at low temperature from silica fume and natural commercial zeolite. Mater Sci Eng. 2018;229:79–85.
  • Malaiskiene J, Skripkiunas G, Vaiciene M, et al. The influence of mullite wool waste on the properties of concrete and ceramics. Constr Build Mater. 2016;110:8–16.
  • American Society for Testing and Materials. Standard Specification for Concrete Aggregates. ASTM C33/C33M-18. Book of Standards Volume: 04.02: Developed by Subcommittee: C09.20; 2018.
  • American Society for Testing and Materials. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM C109/C109M-16a. Book of Standards Volume: 04.01: Developed by Subcommittee C01.27; 2016.
  • American Society for Testing and Materials. Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM C1437 - 15. Book of Standards Volume: 04.01: Developed by Subcommittee: C01.22; 2015.
  • Şahmaran M, Christianto HA, Yaman İÖ. The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars. Cem Concr Compos. 2006;28(5):432–440.
  • Sarker PK, Kelly S, Yao Z. Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater Des. 2014;63:584–592.
  • Zhao R, Sanjayan JG. Geopolymer and Portland cement concretes in simulated fire. Mag Concr Res. 2011;63(3):163–173.
  • Abdulkareem OA, Mustafa Al Bakri AM, Kamarudin H, et al. Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete. Constr Build Mater. 2014;50:377–387.
  • Abdullah MMAB, Jamaludin L, Hussin K, et al. Fly ash porous material using geopolymerization process for high temperature exposure. Int J Mol Sci. 2012;13(4):4388–4395.
  • Martin A, Pastor JY, Palomo A, et al. Mechanical behaviour at high temperature of alkali-activated aluminosilicates (geopolymers). Constr Build Mater. 2015;93:1188–1196.
  • Wongsa A, Sata V, Nuaklong P, et al. Use of crushed clay brick and pumice aggregates in lightweight geopolymer concrete. Constr Build Mater. 2018;188:1025–1034.
  • Boonserm K, Sata V, Pimraksa K, et al. Microstructure and strength of blended FBC-PCC fly ash geopolymer containing gypsum as an additive. ScienceAsia. 2012;38(2):175–181.
  • Izhar T, Khan H, Mumtaz N, et al. Effect of Potassium sulphate in the presence of water on the strength of concrete. IJSART. 2016;2:331–334.
  • Nilsson M, Wielanek L, Wang J, et al. Factors influencing the compressive strength of an injectable calcium sulfate-hydroxyapatite cement. J Mater Sci-Mater M. 2003;14(5):399–404.
  • Helgason B, Ferguson SJ, Koh I, et al. The compressive modulus and strength of saturated calcium sulphate dihydrate cements : implications for testing standards. J Mech Behav Biomed. 2014;34:187–198.
  • Shen C, Mohammed H, Kamar A. Effect of K2SO4 and CaSO4 dihydrate solutions on crystallization and strength of gypsum. J Dent Res. 1981;60(8):1410–1417.
  • Winnefeld F, Barlag S. Calorimetric and thermogravimetric study on the influence of calcium sulfate on the hydration of ye’elimite. J Therm Anal Calorim. 2010;101(3):949–957.
  • Wahab MA, Latif IA, Kohail M, et al. The use of Wollastonite to enhance the mechanical properties of mortar mixes. Constr Build Mater. 2017;152:304–309.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.