413
Views
6
CrossRef citations to date
0
Altmetric
Articles

Effect of activator nature on property development of alkali-activated slag binders

& ORCID Icon

References

  • Turner LK, Collins FG. Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater. 2013; 43:125–130.
  • McLellan BC, Williams RP, Lay J, et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J Cleaner Prod. 2011;19(9–10):1080–1090.
  • Alvarez-Ayuso E, Querol X, Plana F, et al. Environmental, physical and structural characterization of geopolymer matrixes synthesized from coal (co-)combustion fly ashes. J Hazard Mater. 2008;154(1–3):175–183.
  • Davidovits J. Geopolymers and geopolymeric materials. J Therm Anal. 1989;35(2):429–441.
  • Ben Haha M, Le Saout G, Winnefeld F, et al. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem Concr Res. 2011;41(3):301–310.
  • Ye H, Radlińska A. Quantitative analysis of phase assemblage and chemical shrinkage of alkali-activated slag. ACT. 2016;14(5):245–260.
  • Escalante-Garcia JI, Fuentes AF, Gorokhovsky A, Fraire-Luna PE, et al. Hydration products and reactivity of blast-furnace slag activated by various alkalis. J Am Ceram Soc. 2003;86(12):2148–2153.
  • Puertas F, Fernández-Jiménez A, Blanco-Varela MT. Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cem Concr Res. 2004;34(1):139–148.
  • Brough AR, Atkinson A. Sodium silicate-based, alkali-activated slag mortars Part I. Strength, hydration and microstructure. Cem Concr Res. 2002;32(6):865–879.
  • Yang T, Yao X, Zhang Z, et al. Mechanical property and structure of alkali-activated fly ash and slag blends[J]. J Sustain Cem Based Mater. 2012;1(4):167–178.
  • Bakharev T. Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cem Concr Res. 2005;35(6):1233–1246.
  • Sarker PK, Kelly S, Yao ZT. Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater Des. 2014; 63:584–592.
  • Bondar D, Ma QM, Soutsos M, et al. Alkali activated slag concretes designed for a desired slump, strength and chloride diffusivity. Constr Build Mater. 2018; 190:191–199.
  • Van Deventer JSJ, Nicolas RS, Ismail I, et al. Microstructure and durability of alkali-activated materials as key parameters for standardization. J Sustain Cem Based Mater. 2015;4(2):116–128.
  • Palacios M, Puertas F. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem Concr Res. 2007;37(5):691–702.
  • Wang GS, Ma YW. Drying shrinkage of alkali-activated fly ash/slag blended system. J Sustain Cem Based Mater. 2018;7(4):203–213.
  • Fernández-Jiménez A, Puertas F. Alkali-activated slag cements: kinetic studies. Cem Concr Res. 1997;27(3):359–368.
  • Duran Atiş C, Bilim C, Çelik Ö, et al. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater. 2009;23(1):548–555.
  • Lloyd NA, Rangan BV. Geopolymer concrete with fly ash. Proceedings of the 2nd International Conference on Sustainable Construction Materials and Technologies; Jun 28–30; Ancona, Italy: Università Politecnica delle Marche; 2010.
  • Sindhunata van Deventer JSJ, Lukey GC, Xu H. Effect of curing temperature and silicate concentration on fly-ash-based geopolymerization. Ind Eng Chem Res. 2006;45(10):3559–3568.
  • Ravikumar D, Neithalath N. Reaction kinetics in sodium silicate powder and liquid activated slag binders evaluated using isothermal calorimetry. Thermochim Acta. 2012;546:32–43.
  • Aydin S, Baradan B. Effect of activator type and content on properties of alkali-activated slag mortars. Compos Part B Eng. 2014;57:166–172.
  • Almakhadmeh W, Soliman AM. Effect of sodium oxide on the properties of alkali activated slag mortars. Proceedings of the Annual Conference - Canadian Society for Civil Engineering; Canadian Scociety for civil engineering, Pointe Claire, Quebec, Canada, June; 2019.
  • Collins F, Sanjayan JG. Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete. Cem Concr Res. 2000;30(9):1401–1406.
  • Shi CJ. Strength, pore structure and permeability of alkali-activated slag mortars. Cem Concr Res. 1996;26(12):1789–1799.
  • Ye H, Radlińska A. Shrinkage mechanisms of alkali-activated slag. Cem Concr Res. 2016;88:126–135.
  • Neto AAM, Cincotto MA, Repette W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem Concr Res. 2008;38(4):565–574.
  • Kumarappa DB, Peethamparan S, Ngami M. Autogenous shrinkage of alkali activated slag mortars: basic mechanisms and mitigation methods. Cem Concr Res. 2018; 109:1–9.
  • ASTM C191. Standard test methods for the time of setting of hydraulic cement by Vicat needle. West Conshohocken (PA): Annual Book of ASTM Standards; 2005.
  • ASTM C1679. Standard practice for measuring hydration kinetics of hydraulic cementitious mixtures using isothermal calorimetry. West Conshohocken (PA): ASTM International; 2017.
  • Li N, Shi CJ, Zhang ZH. Understanding the roles of activators towards setting and hardening control of alkali-activated slag cement. Compos Part B Eng. 2019; 171:34–45.
  • Chang JJ. A study on the setting characteristics of sodium silicate-activated slag pastes. Cem Concr Res. 2003;33(7):1005–1011.
  • Song S, Sohn D, Jennings HM, et al. Hydration of alkali-activated ground granulated blast furnace slag. J Mater Sci. 2000;35(1):249–257.
  • Bernal SA, de Gutierrez RM, Provis JL. Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Constr Build Mater. 2012; 33:99–108.
  • Snyder KA, Feng X, Keen BD, et al. Estimating the electrical conductivity of cement paste pore solutions from OH-, K + and Na + concentrations. Cem Concr Res. 2003;33(6):793–798.
  • Almakhadmeh W, Soliman AM. Comparative analysis of reaction kinetics of one and two parts alkali activated slag. Proceedings of the Annual Conference - Canadian Society for Civil Engineering; Canadian Scociety for civil engineering, Pointe Claire, Quebec, Canada, June; 2019.
  • Li YP, Shen L, Mirmoghtadaei R, et al. A design of experiment approach to study the effects of raw material on the performance of geopolymer concrete. Adv Civ Eng Mater. 2017;6(1):20160007–20160049.
  • El-Hassan H, Ismail N. Effect of process parameters on the performance of fly ash/GGBS blended geopolymer composites. J Sustain Cem Based Mater. 2018;7(2):122–140.
  • Fang GH, Bahrami H, Zhang MZ. Mechanisms of autogenous shrinkage of alkali-activated fly ash-slag pastes cured at ambient temperature within 24 h. Constr Build Mater. 2018; 171:377–387.
  • Yip CK, Lukey GC, van Deventer JSJ. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem Concr Res. 2005;35(9):1688–1697.
  • Yip CK, Van Deventer JSJ. Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder. J Mater Sci. 2003;38(18):3851–3860.
  • Bakharev T, Sanjayan JG, Cheng YB. Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cem Concr Res. 1999;29(10):1619–1625.
  • Wang SD, Scrivener KL, Pratt PL. Factors affecting the strength of alkali-activated slag. Cem Concr Res. 1994;24(6):1033–1043.
  • Krizan D, Zivanovic B. Effects of dosage and modulus of water glass on early hydration of alkali-slag cements. Cem Concr Res. 2002;32(8):1181–1188.
  • Radlinska A, Rajabipour F, Bucher B, et al. Shrinkage mitigation strategies in cementitious systems a closer look at differences in sealed and unsealed behavior. Transp Res Record. 2008;2070(1):59–67.
  • Chen W, Brouwers HJH. The hydration of slag, part 1: reaction models for alkali-activated slag. J Mater Sci. 2007;42(2):428–443.
  • Bao-Guo M, Xiao-Dong W, Ming-Yuan W, et al. Drying shrinkage of cement-based materials under conditions of constant temperature and varying humidity. J China Univ Min Technol. 2007;17(3): 428–431.
  • Kutti T. Hydration products of alkali-activated slag. Proceedings of the 9th International on Congress on the Chemistry of Cement; New Delhi; 1992. p. 468–474.
  • Hu X, Shi CJ, Zhang ZH, et al. Autogenous and drying shrinkage of alkali-activated slag mortars. J Am Ceram Soc. 2019;102(8):4963–4975.
  • Gao X, Yu QL, Brouwers HJH. Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model. Constr Build Mater. 2016;119:175–184.
  • Thomas RJ, Lezama D, Peethamparan S. On drying shrinkage in alkali-activated concrete: improving dimensional stability by aging or heat-curing. Cem Concr Res. 2017;91:13–23.
  • Shi C, Krivenko P, Roy D. Alkali-activated cement and concrete. New York: Taylor & Francis; 2006.
  • Gorhan G. The evaluation with anova of the effect of lime admixture and thermal cure time on fly ash paste activated with sodium silicate solution. Constr Build Mater. 2015; 94:228–234.
  • Mohammed BS, Fang OC, Hossain KMA, et al. Mix proportioning of concrete containing paper mill residuals using response surface methodology. Constr Build Mater. 2012; 35:63–68.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.