558
Views
23
CrossRef citations to date
0
Altmetric
Articles

Effect of curing regime on the performance and microstructure characteristics of alkali-activated slag-fly ash blended concrete

ORCID Icon, &

References

  • Jiang M, Chen X, Rajabipour F, et al. Comparative life cycle assessment of conventional, glass powder, and alkali-activated slag concrete and mortar. J Infrastruct Syst. 2014;20(4):04014020.
  • Provis JL, Bernal SA. Milestones in the analysis of alkali-activated binders. J Sustain Cem Mater. 2015;4(2):74–84.
  • Wongsa A, Wongkvanklom A, Tanangteerapong D, et al. Comparative study of fire-resistant behaviors of high-calcium fly ash geopolymer mortar containing zeolite and mullite. J Sustain Cem Mater. 2020;9(5):307–321.
  • Juenger MCG, Winnefeld F, Provis JL, et al. Advances in alternative cementitious binders. Cem Concr Res. 2011;41(12):1232–1243.
  • Thomas RJ, Radlinska HYA, Sulapha P. Alkali-activated slag cement concrete. Concr Int. 2016;38(1):33–38.
  • Behfarnia K, Rostami M. An assessment on parameters affecting the carbonation of alkali-activated slag concrete. J Clean Prod. 2017;157:1–9.
  • Sagoe-Crentsil K, Brown T, Taylor A. Drying shrinkage and creep performance of geopolymer concrete. J Sustain Cem Mater. 2013;2(1):35–42.
  • Montes C, Zang D, Allouche EN. Rheological behavior of fly ash-based geopolymers with the addition of superplasticizers. J Sustain Cem Mater. 2012;1(4):179–185.
  • Bernal SA, Rodríguez ED, Mejía de Gutiérrez R, et al. Performance of alkali-activated slag mortars exposed to acids. J Sustain Cem Mater. 2012;1(3):138–151.
  • Uddin Ahmed Shaikh F, Haque S, Sanjayan J. Behavior of fly ash geopolymer as fire resistant coating for timber. J Sustain Cem Mater. 2019;8(5):259–274.
  • Vafaei M, Allahverdi A, Dong P, et al. Durability performance of geopolymer cement based on fly ash and calcium aluminate cement in mild concentration acid solutions. J Sustain Cem Mater. 2019;8(5):290–308.
  • Firdous R, Stephan D. Impact of the mineralogical composition of natural pozzolan on properties of resultant geopolymers. J Sustain Cem Mater. 2020;1–16.
  • Sukontasukkul P, Chindaprasirt P, Pongsopha P, et al. Effect of fly ash/silica fume ratio and curing condition on mechanical properties of fiber-reinforced geopolymer. J Sustain Cem Mater. 2020;9(4):218–232.
  • Kuri JC, Khan MNN, Sarker PK. Workability, strength and microstructural properties of ground ferronickel slag blended fly ash geopolymer mortar. J Sustain Cem Mater. 2020;1–18.
  • Aydın S, Baradan B. Effect of activator type and content on properties of alkali-activated slag mortars. Compos B Eng. 2014;57:166–172.
  • Ismail N, El-Hassan H. Development and characterization of fly ash/slag-blended geopolymer mortar and lightweight concrete. J Mater Civil Eng. 2018;30(4):04018029.
  • El-Hassan H, Ismail N. Effect of process parameters on the performance of fly ash/GGBS blended geopolymer composites. J Sustain Cem Mater. 2018;7(2):122–140.
  • El-Hassan H, Shehab E, Al-Sallamin A. Influence of different curing regimes on the performance and microstructure of alkali-activated slag concrete. J Mater Civil Eng. 2018;30(9):04018230.
  • El-Hassan H, Elkholy S. Performance evaluation and microstructure characterization of steel fiber-reinforced alkali-activated slag concrete incorporating fly ash. J Mater Civil Eng. 2019;31(10):04019223.
  • van Deventer JSJ, San Nicolas R, Ismail I, et al. Microstructure and durability of alkali-activated materials as key parameters for standardization. J Sustain Cem Mater. 2015;4(2):116–128.
  • Winnefeld F, Ben Haha M, Le Saout G, et al. Influence of slag composition on the hydration of alkali-activated slags. J Sustain Cem Mater. 2015;4(2):85–100.
  • Ballekere Kumarappa D, Peethamparan S, Ngami M. Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods. Cem Concr Res. 2018;109:1–9.
  • Puertas F, Fernandez-Jimenez A. Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes. Cem Concr Compos. 2003;25(3):287–292.
  • Richardson IG. The calcium silicate hydrates. Cem Concr Res. 2008;38(2):137–158.
  • Ismail I, Bernal SA, Provis JL, et al. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem Concr Compos. 2014;45:125–135.
  • Nadziri N, Ismail I, Hamdan S. Binding gel characterization of alkali-activated binders based on palm oil fuel ash (POFA) and fly ash. J Sustain Cem Mater. 2018;7(1):1–4.
  • Shi C, Day RL. Early strength development and hydration of alkali-activated blast furnace slag/fly ash blends. Adv Cem Res. 1999;11(4):189–196.
  • Shi C, Roy D, Krivenko P. Alkali-activated cements and concretes. Boca Raton, Florida: Routledge; 2006.
  • Elkholy S, El-Hassan H, editors. Mechanical and micro-structure characterization of steel fiber-reinforced geopolymer concrete. Interdependence between Structural Engineering and Construction Management. Chicago (IL): ISEC Press; 2019.
  • Nath P, Sarker PK. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr Build Mater. 2014;66:163–171.
  • Nath SK, Kumar S. Influence of iron making slags on strength and microstructure of fly ash geopolymer. Constr Build Mater. 2013;38:924–930.
  • Tennakoon C, De Silva P, Sagoe-Crentsil K, et al. Influence and role of feedstock Si and Al content in geopolymer synthesis. J Sustain Cem Mater. 2015;4(2):129–139.
  • Yan S, Sagoe-Crentsil K. Evaluation of fly ash geopolymer mortar incorporating calcined wastepaper sludge. J Sustain Cem Mater. 2016;5(6):370–380.
  • Yang T, Yao X, Zhang Z, et al. Mechanical property and structure of alkali-activated fly ash and slag blends. J Sustain Cem Mater. 2012;1(4):167–178.
  • Rakhimova NR, Rakhimov RZ. A review on alkali-activated slag cements incorporated with supplementary materials. J Sustain Cem Mater. 2014;3(1):61–74.
  • Bakharev T, Sanjayan JG, Cheng YB. Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cem Concr Res. 1999;29(10):1619–1625.
  • Wardhono A, Law DW, Strano A. The strength of alkali-activated slag/fly ash mortar blends at ambient temperature. Procedia Eng. 2015;125:650–656.
  • Yang K-H, Mun J-H, Sim J-I, et al. Effect of water content on the properties of lightweight alkali-activated slag concrete. J Mater Civil Eng. 2011;23(6):886–894.
  • Aydın S, Baradan B. Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Mater Des. 2012;35:374–383.
  • Gu Y-m, Fang Y-h, You D, et al. Properties and microstructure of alkali-activated slag cement cured at below- and about-normal temperature. Constr Build Mater. 2015;79:1–8.
  • Karim MR, Hossain MM, Manjur A Elahi M, et al. Effects of source materials, fineness and curing methods on the strength development of alkali-activated binder. J Build Eng. 2020;29:101147.
  • ASTM. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken (PA): ASTM International. 2019.
  • ASTM. Standard test methods for specific gravity of soil solids by water pycnometer. West Conshohocken (PA): ASTM International. 2014.
  • ASTM. Standard test method for bulk density (“unit weight”) and voids in aggregate. West Conshohocken (PA): ASTM International. 2017.
  • Bernal SA, Rodríguez ED, Mejia de Gutiérrez R, et al. Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash. Waste Biomass Valor. 2012;3(1):99–108.
  • ASTM. Standard test method for sieve analysis of fine and coarse aggregates. West Conshohocken (PA): ASTM International. 2019.
  • Marjanović N, Komljenović M, Baščarević Z, et al. Physical–mechanical and microstructural properties of alkali-activated fly ash–blast furnace slag blends. Ceram Int. 2015;41(1):1421–1435.
  • Palacios M, Puertas F. Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars. Cem Concr Res. 2005;35(7):1358–1367.
  • ASTM. Standard practice for making and curing concrete test specimens in the field. West Conshohocken (PA): ASTM International. 2019.
  • ASTM. Standard test method for slump of hydraulic-cement concrete. West Conshohocken (PA): ASTM International. 2020.
  • ASTM. Standard test method for density (unit weight), yield, and air content (gravimetric) of concrete. West Conshohocken (PA): ASTM International. 2017.
  • ASTM. Standard test method for density, absorption, and voids in hardened concrete. West Conshohocken (PA): ASTM International; 2013.
  • ASTM. Standard test method for bulk electrical conductivity of hardened concrete. West Conshohocken (PA): ASTM International; 2012.
  • ASTM. Standard test method for electrical indication of concrete's ability to resist chloride ion penetration. West Conshohocken (PA): ASTM International.
  • British Standard. Testing hardened concrete - compressive strength of test specimens. London: British Standard; 2019.
  • ASTM. Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken (PA): ASTM; 2020.
  • ASTM. Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression. West Conshohocken (PA): ASTM International; 2014.
  • Al-Majidi MH, Lampropoulos A, Cundy A, et al. Development of geopolymer mortar under ambient temperature for in situ applications. Constr Build Mater. 2016;120:198–211.
  • Davidovits J, editor. Geopolymer chemistry and applications. France: Institut Géopolymère; 2008.
  • Ismail N, Mansour M, El-Hassan H. Development of a low-cost cement free polymer concrete using industrial by-products and dune sand. MATEC Web Conf. 2017;120:03005.
  • El-Hassan H, Ismail N, Al Hinaii S, et al. Effect of GGBS and curing temperature on microstructure characteristics of lightweight geopolymer concrete. MATEC Web Conf. 2017;120:03004.
  • Haha MB, Lothenbach B, Le SG, et al. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—part II: effect of Al2O3. Cem Concr Res. 2012;42(1):74–83.
  • Haha MB, Lothenbach B, Le SG, et al. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—part I: effect of MgO. Cem Concr Res. 2011;41(9):955–963.
  • Noushini A, Castel A. The effect of heat-curing on transport properties of low-calcium fly ash-based geopolymer concrete. Constr Build Mater. 2016;112:464–477.
  • Bhagath SG, Subramaniam KVL. Effect of active components on strength development in alkali-activated low calcium fly ash cements. J Sustain Cem Mater. 2019;8(1):1–19.
  • Khodr M, Law DW, Gunasekara C, et al. Compressive strength and microstructure evolution of low calcium brown coal fly ash-based geopolymer. J Sustain Cem Mater. 2020;9(1):17–34.
  • Burciaga-Díaz O, Magallanes-Rivera RX, Escalante-García JI. Alkali-activated slag-metakaolin pastes: strength, structural, and microstructural characterization. J Sustain Cem Mater. 2013;2(2):111–127.
  • Zhang Z, Wang H, Provis JL. Quantitative study of the reactivity of fly ash in geopolymerization by FTIR. J Sustain Cem Mater. 2012;1(4):154–166.
  • Elwell DJ, Fu G. Compression testing of concrete: cylinders versus cubes [Tech Report]. 1995.
  • ACI Committee 318. Building code requirements for structural concrete and commentary. Farmington Hills (MI): American Concrete Institute; 2014.
  • ACI Committee 363. State of the art report on high-strength concrete. Farmington Hills (MI): American Concrete Institute; 1992. p. 364–411.
  • AS3600. Concrete structures. Sydney: Standards Australia; 2009. p. 198.
  • Comité euro-international du béton, Federation International de la Precontrainte. CEB-FIP Model Code 1990: Design Code. T. Telford; 1993.
  • Dilli ME, Atahan HN, Şengül C. A comparison of strength and elastic properties between conventional and lightweight structural concretes designed with expanded clay aggregates. Constr Build Mater. 2015;101:260–267.
  • Mendis P. Design of high‐strength concrete members: state‐of‐the‐art. Prog Struct Eng Mater. 2003;5(1):1–15.
  • Colella C. Use of thermal analysis in zeolite research and application. In: Rincon JM, Romero M, editors. Characterization techniques of glasses and ceramics. Berlin, Heidelberg: Springer Berlin Heidelberg; 1999. p. 112–137.
  • Perera DS, Vance ER, Finnie KS, et al. Disposition of water in metakaolinite based geopolymers. Advances in ceramic matrix composites XI. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2006. p. 225–236.
  • Wang K, Shah SP, Mishulovich A. Effects of curing temperature and NaOH addition on hydration and strength development of clinker-free CKD-fly ash binders. Cem Concr Res. 2004;34(2):299–309.
  • Majchrzak-Kucęba I, Nowak W. Thermal analysis of fly ash-based zeolites. J Therm Anal Calorim. 2004;77(1):125–131.
  • Jiao Z, Wang Y, Zheng W, et al. Effect of dosage of sodium carbonate on the strength and drying shrinkage of sodium hydroxide based alkali-activated slag paste. Constr Build Mater. 2018;179:11–24.
  • Puertas F, Torres-Carrasco M. Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cem Concr Res. 2014;57:95–104.
  • Nath SK. Geopolymerization behavior of ferrochrome slag and fly ash blends. Constr Build Mater. 2018;181:487–494.
  • Al Bakri AMM, Kamarudin H, Binhussain M, et al. The processing, characterization, and properties of fly ash based geopolymer concrete. Reviews on Advanced Materials Science. 2012;30: 90–97.
  • Kristály F, Szabó R, Mádai F, et al. Lightweight composite from fly ash geopolymer and glass foam. J Sustain Cem Mater. 2020;10:1–22.
  • Ferone C, Colangelo F, Roviello G, et al. Application-oriented chemical optimization of a metakaolin based geopolymer. Materials (Basel). 2013;6(5):1920–1939.
  • Ismail I, Bernal SA, Provis JL, et al. Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Mater Struct. 2013;46(3):361–373.
  • Beglarigale A, Yazici H. Mitigation of detrimental effects of alkali-silica reaction in cement-based composites by combination of steel microfibers and ground-granulated blast-furnace slag. J Mater Civil Eng. 2014;26(12):04014091.
  • Yazıcı H. The effect of steel micro-fibers on ASR expansion and mechanical properties of mortars. Constr Build Mater. 2012;30:607–615.
  • Shi C, Jiménez AF, Palomo A. New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem Concr Res. 2011;41(7):750–763.
  • Brough AR, Atkinson A. Sodium silicate-based, alkali-activated slag mortars: part I. strength, hydration and microstructure. Cem Concr Res. 2002;32(6):865–879.
  • Abdulkareem OA, Mustafa Al Bakri AM, Kamarudin H, et al. Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete. Constr Build Mater. 2014;50:377–387.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.