248
Views
1
CrossRef citations to date
0
Altmetric
Articles

Potential utilization of sugarcane bagasse ash for developing alkali-activated materials

ORCID Icon, &

References

  • Bahurudeen A, Kanraj D, Gokul Dev V, et al. Performance evaluation of sugarcane bagasse ash blended cement in concrete. Cem Concr Compos. 2015;59:77–88.
  • Bahurudeen A, Santhanam M. Influence of different processing methods on the pozzolanic performance of sugarcane bagasse ash. Cem Concr Compos. 2015;56:32–45.
  • Setayesh Gar P, Suresh N, Bindiganavile V. Sugar cane bagasse ash as a pozzolanic admixture in concrete for resistance to sustained elevated temperatures. Constr Build Mater. 2017;153:929–936.
  • Le D-H, Sheen Y-N, Lam MN-T. Fresh and hardened properties of self-compacting concrete with sugarcane bagasse ash–slag blended cement. Constr Build Mater. 2018;185:138–147.
  • Zareei SA, Ameri F, Bahrami N. Microstructure, strength, and durability of eco-friendly concretes containing sugarcane bagasse ash. Constr Build Mater. 2018;184:258–268.
  • van Deventer JSJ, San Nicolas R, Ismail I, et al. Microstructure and durability of alkali-activated materials as key parameters for standardization. J Sustain Cem Based Mater. 2015;4(2):116–128.
  • Rakhimova NR, Rakhimov RZ. A review on alkali-activated slag cements incorporated with supplementary materials. J Sustain Cem Based Mater. 2014;3(1):61–74.
  • Zhang J, Shi C, Zhang Z, et al. Durability of alkali-activated materials in aggressive environments: a review on recent studies. Constr Build Mater. 2017;152:598–613.
  • Singh B, Ishwarya G, Gupta M, et al. Geopolymer concrete: a review of some recent developments. Constr Build Mater. 2015;85:78–90.
  • Luukkonen T, Abdollahnejad Z, Yliniemi J, et al. One-part alkali-activated materials: a review. Cem Concr Res. 2018;103:21–34.
  • Ismail I, Bernal SA, Provis JL, et al. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem Concr Compos. 2014;45:125–135.
  • Chi M. Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete. Constr Build Mater. 2012;35:240–245.
  • Ravikumar D, Neithalath N. Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH. Cem Concr Compos. 2012;34(7):809–818.
  • Thomas RJ, Lezama D, Peethamparan S. On drying shrinkage in alkali-activated concrete: improving dimensional stability by aging or heat-curing. Cem Concr Res. 2017;91:13–23.
  • Hu X, Shi C, Zhang Z, et al. Autogenous and drying shrinkage of alkali-activated slag mortars. J Am Ceram Soc. 2019;102(8):4963–4975.
  • Kirschner AV, Harmuth HD. Investigation of geopolymer binders with respect to their application for building materials. Ceramics Silikáty. 2004;48:117–120.
  • Hu X, Shi C, Shi Z, et al. Compressive strength, pore structure and chloride transport properties of alkali-activated slag/fly ash mortars. Cem Concr Compos. 2019;104:103392.
  • Chi M, Huang R. Binding mechanism and properties of alkali-activated fly ash/slag mortars. Constr Build Mater. 2013;40:291–298.
  • Mejía JM, Mejía d. G R, Puertas F. Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems. Mater Construcción. 2013–2013;63:No. 311.
  • Deepika S, Anand G, Bahurudeen A, et al. Construction products with sugarcane bagasse ash binder. J Mater Civ Eng. 2017;29(10):04017189.
  • Castaldelli VN, Tashima MM, Melges JLP, Akasaki JL, et al. Preliminary studies on the use of sugar cane bagasse ash (SCBA) in the manufacture of alkali activated binders. KEM. 2014;600:689–698.
  • Pereira A, Akasaki JL, Melges JLP, et al. Mechanical and durability properties of alkali-activated mortar based on sugarcane bagasse ash and blast furnace slag. Ceram Int. 2015;41(10):13012–13024.
  • Murugesan T, Vidjeapriya R, Bahurudeen A. Development of sustainable alkali activated binder for construction using sugarcane bagasse ash and marble waste. Sugar Tech. 2020;22(5):885–895.
  • ASTM:C191. Time of Setting of Hydraulic Cement by Vicat Needle, 2004.
  • ASTM:C143. Standard Test Method for Slump of Hydraulic Cement Concrete, 2005.
  • ASTM:C109. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), 2008.
  • ASTM:C596. Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement, 2009.
  • ASTM:C150. Standard Specification for Portland Cement, 2002.
  • Lee NK, Lee HK. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Constr Build Mater. 2013;47:1201–1209.
  • Awoyera P, Adesina A. A critical review on application of alkali activated slag as a sustainable composite binder. Case Stud Constr Mater. 2019;11:e00268.
  • Li N, Shi C, Wang Q, et al. Composition design and performance of alkali-activated cements. Mater Struct. 2017;50(3):178.
  • Puligilla S, Mondal P. Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cem Concr Res. 2013;43:70–80.
  • Yang T-R, Chang T-P, Chen B, et al. Effect of alkaline solutions on engineering properties of alkali-activated GGBFS paste. J Mar Sci Technol (Taiwan). 2012;20.
  • Gao X, Yu QL, Brouwers HJH. Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends. Constr Build Mater. 2015;80:105–115.
  • Gao X, Yu QL, Brouwers HJH. Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model. Constr Build Mater. 2016;119:175–184.
  • Moraes JCB, Tashima MM, Akasaki JL, et al. Increasing the sustainability of alkali-activated binders: the use of sugar cane straw ash (SCSA). Constr Build Mater. 2016;124:148–154.
  • Cordeiro GC, Toledo FR, Fairbairn EMR. Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Constr Build Mater. 2009;23(10):3301–3303.
  • Sua-Iam G, Makul N. Utilization of coal- and biomass-fired ash in the production of self-consolidating concrete: a literature review. J Clean Prod. 2015;100:59–76.
  • Moraes JCB, Font A, Soriano L, et al. New use of sugar cane straw ash in alkali-activated materials: a silica source for the preparation of the alkaline activator. Constr Build Mater. 2018;171:611–621.
  • Castaldelli VN, Akasaki JL, Melges JLP, et al. Use of slag/sugar cane bagasse ash (SCBA) blends in the production of alkali-activated materials. Materials (Basel). 2013;6(8):3108–3127.
  • Moraes JCB, Tashima MM, Akasaki JL, et al. Effect of sugar cane straw ash (SCSA) as solid precursor and the alkaline activator composition on alkali-activated binders based on blast furnace slag (BFS). Constr Build Mater. 2017;144:214–224.
  • Zuhua Z, Xiao Y, Huajun Z, et al. Role of water in the synthesis of calcined kaolin-based geopolymer. Appl Clay Sci. 2009;43(2):218–223.
  • Rashad AM. Alkali-activated metakaolin: a short guide for civil engineer – An overview. Constr Build Mater. 2013;41:751–765.
  • Komljenović M. Mechanical strength and Young's modulus of alkali-activated cement-based binders. In: Pacheco-Torgal F, Labrincha JA, Leonelli C, Palomo A, Chindaprasirt P, editors. Handbook of alkali-activated cements, mortars and concretes. Oxford: Woodhead Publishing; 2015. p. 171–215.
  • Wang G, Ma Y. Drying shrinkage of alkali-activated fly ash/slag blended system. J Sustain Cem Based Mater. 2018;7(4):203–213.
  • Ye H, Radlińska A. Shrinkage mechanisms of alkali-activated slag. Cem Concr Res. 2016;88:126–135.
  • Omelchuk V, Ye G, Runova RF, et al. Shrinkage behavior of alkali-activated slag cement pastes. KEM. 2018;761:45–48.
  • Ye H, Cartwright C, Rajabipour F, et al. Understanding the drying shrinkage performance of alkali-activated slag mortars. Cem Concr Compos. 2017;76:13–24.
  • Ismail I, Bernal SA, Provis JL, et al. Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Mater Struct. 2013;46(3):361–373.
  • Komljenović M, Baščarević Z, Marjanović N, et al. External sulfate attack on alkali-activated slag. Constr Build Mater. 2013;49:31–39.
  • Bakharev T. Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cem Concr Res. 2005;35(6):1233–1246.
  • Bakharev T, Sanjayan JG, Cheng YB. Sulfate attack on alkali-activated slag concrete. Cem Concr Res. 2002;32(2):211–216.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.