193
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Thermodynamic difficulties to determine a critical chloride threshold for breakdown of the protective layer of steel reinforcement in a maritime concrete structure

ORCID Icon, ORCID Icon, &

References

  • Angst U, Elsener B, Larsen CK, et al. Critical chloride content in reinforced concrete—a review. Cem Concr Res. 2009;39(12):1122–1138.
  • Cao Y, Gehlen C, Angst U, et al. Critical chloride content in reinforced concrete—an updated review considering Chinese experience. Cem Concr Res. 2019;117:58–68.
  • American Society for Testing Materials, ASTM C-1152. Standard test method for acid-soluble chloride in mortar and concrete.
  • Andrade C, Castellote M. Testing and modelling chloride penetration in concrete: analysis of total chloride content in concrete. Mater Struct. 2002;35:583–585.
  • Alonso C, Andrade C, Castellote M, et al. Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar. Cem Concr Res. 2000;30(7):1047–1055.
  • Hausmann DA. Steel corrosion in concrete. How does it occur? Mater Protect. 1967;6:19–23.
  • Gouda VK. Corrosion and corrosion inhibition of reinforcing steel. I. Immersed in alkaline solutions. Br Corros J. 1970;5(5):198–203.
  • Glass GK, Buenfeld NR. The presentation of the chloride threshold level for corrosion of steel in concrete. Corros Sci. 1997;39(5):1001–1013.
  • Mammoliti LT, Brown LC, Hansson CM, et al. The influence of surface finish of reinforcing steel and pH of the test solution on the chloride threshold concentration for corrosion initiation in synthetic pore solutions. Cem Concr Res. 1996;26(4):545–550.
  • Li L, Sagüés AA. Chloride corrosion threshold of reinforcing steel in alkaline solutions-open-circuit immersion tests. Corrosion. 2001;57(1):19–28.
  • Pillai RG, Trejo D. Surface condition effects on critical chloride threshold of steel reinforcement. ACI Mater J. 2005;102:103–109.
  • Ghods P, Isgor OB, Brown JR, et al. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties. Appl Surf Sci. 2011;257(10):4669–4677.
  • Veleva L, Alpuche-Aviles MA, Graves-Brook MK, et al. Comparative cyclic voltammetry and surface analysis of passive films grown on stainless steel 316 in concrete pore model solutions. Electroanal Chem. 2002;537(1-2):85–93.
  • Ghods P, Isgor OB, Mcrae G, et al. The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement. Cem Concr Compos. 2009;31(1):2–11.
  • Gunay HB, Isgor B, Ghods P. Kinetics of passivation and chloride-induced depassivation of iron in simulated concrete pore solutions using electrochemical quartz crystal. Corrosion. 2015;71(5):615–627.
  • Alhozaimy A, Hussain RR, Al-Negheimish A. Significance of oxygen concentration on the quality of passive film formation for steel reinforced concrete structures during the initial curing of concrete. Cem Concr Compos. 2016;65:171–176.
  • Ann KY, Song H-W. Chloride threshold level for corrosion of steel in concrete. Corros Sci. 2007;49(11):4113–4133.
  • Wedding PA, Diamond S. Chloride concentrations in concrete pore solutions resulting from calcium and sodium chloride admixtures. Cement Concr Aggr. 1986;8(2):97–102.
  • Moreno M, Morris W, Alvarez MG, et al. Corrosion of reinforcing steel in simulated concrete pore solutions: effect of carbonation and chloride content. Corros Sci. 2004;46(11):2681–2699.
  • Yu L, François R, Dang VH, et al. Development of chloride-induced corrosion in pre-cracked RC beams under sustained loading: effect of load-induced cracks, concrete cover, and exposure conditions. Cem Concr Res. 2015;67:246–258..
  • Kolotyrkin YJ. Pitting corrosion of metals. Corrosion. 1963;19(8):261–268.
  • Dabosi F, Baroux B. Corrosion localisée. EDP Sciences Edition; 1994.
  • Hoar TP, Mears DC, Rothwell GP. The relationships between anodic passivity, brightening and pitting. Corros Sci. 1965;5(4):279–289.
  • Vetter KJ, Strehblow HH. Entstehung und gestalt von korrosionslöchern bei lochfraßan eisen und theoretische folgerungen zur lochfraßkorrosion. Berichte Bunsengesellschaft Phys Chem. 1970;1024–1035.
  • Strehblow H-H. Nucleation and repassivation of corrosion pits for pitting on iron and nickel. Mater Corros. 1976;27(11):792–799.
  • Kenny A, Katz A. Steel-concrete interface influence on chloride threshold for corrosion—empirical reinforcement to theory. Constr Build Mater. 2020;244:118376.. https://www.sciencedirect.com/science/article/pii/S0950061820303810
  • Poursaee A. Corrosion of steel bars in saturated Ca(OH)2 and concrete pore solution. Concr Res Lett. 2010;1:90–97.
  • Ghods P, Isgor OB, Carpenter GJC, et al. Nano-scale study of passive films and chloride-induced depassivation of carbon steel rebar in simulated concrete pore solutions using FIB/TEM. Cem Concr Res. 2013;47(0):55–68.
  • Sanchez M, Gregori J, Alonso C, et al. Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores. Electrochim Acta. 2007;52(27):7634–7641.
  • Pourbaix M. Atlas d’équilibres électrochimiques à 25°C. Gauthier-Villars et CEBELCOR, 1963.
  • Joiret S, Keddam M, Novoa XR, et al. Use of EIS, ring-disk electrode, EQCM and raman spectroscopy to study the film of oxides formed on iron in 1 M NaOH. Cement Concr Compos. 2002;24(1):7–15.
  • Sanchez M, Gregori J, Alonso MC, et al. Anodic growth of passive layers on steel rebars in an alkaline medium simulating the concrete pores. Electrochim Acta. 2006;52(1):47–53.
  • Sanchez-Moreno M, Takenouti H, Garcia-Janero JJ, et al. A theoretical approach of impedance spectroscopy during the passivation of steel in alkaline media. Electrochim Acta. 2009;54(28):7222–7226.
  • Ghods P, Isgor OB, Bensebaa F, et al. Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution. Corros Sci. 2012;58:159–167.
  • Gunay HB, Ghods P, Isgor OB, et al. Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS. Appl Surf Sci. 2013;274(0):195–202.
  • Suda K, Misra S, Motohashi K. Corrosion products of reinforcing bars embedded in concrete. Corros Sci. 1993;35(5-8):1543–1549.
  • Noda K, Tsuru T, Haruyama S. The impedance characteristics of passive films on iron. Corros Sci. 1990;31(0):673–678.
  • Pan T, Van Duin ACT. Passivation of steel surface: an atomistic modeling approach aided with X-ray analyses. Mater Lett. 2011;65(21-22):3223–3226.
  • Zakroczymski T, Fan C‐J, Szklarska‐Smialowska Z. Kinetics and mechanism of passive film formation on iron in 0.05M NaOH. J Electrochem Soc. 1985;132(12):2862–2867.
  • Haupt S, Strehblow HH. Corrosion, layer formation, and oxide reduction of passive iron in alkaline solution: a combined electrochemical and surface analytical study. Langmuir. 1987;3(6):873–885.
  • Miserque F, Huet B, Azou G, et al. X-ray photoelectron spectroscopy and electrochemical studies of mild steel FeE500 passivation in concrete simulated water. J Phys IV France. 2006;136:89–97.
  • Sagoe-Crentsil KK, Glasser FP. Green rust, iron solubility and the role of chloride in the corrosion of steel at high pH. Cem Concr Res. 1993;23(4):785–791.
  • Cornell R, Schwertmann U. The iron oxides: structure, properties, reactions, occurrences and uses. Wiley-VCH Verlag GmbH & Co. KGaA, 2003.
  • Asami K, Kikuchi M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal industrial atmosphere for 17 years. Corros Sci. 2003;45(11):2671–2688.
  • Morcillo M, Alcantara J, Diaz I, et al. Marine atmospheric corrosion of carbon steels. REVMETAL. 2015;51(2):e045.
  • Abdelmoula M, Refait P, Drissi S, et al. Conversion electron mössbauer spectroscopy and x-ray diffraction studies of the formation of carbonate-containing green rust one by corrosion of metallic iron in NaHCO3 and (NaHCO3 + NaCl) solutions. Corros Sci. 1996;38(4):623–633. https://www.sciencedirect.com/science/article/pii/0010938X9500153B
  • Refait P, Abdelmoula M, Génin J-MR. Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chlorides ions. Corros Sci. 1998;40(9):1547–1560.
  • Hansen HCB. Composition, stabilization, and light absorption of Fe(II)Fe(III) hydroxy-carbonate (‘green rust’). Clay Miner. 1989;24(4):663–669.
  • Abdelmoula M, Trolard F, Bourrié G, et al. Evidence for the Fe(II)-Fe(III) green rust” fougerite” mineral occurrence in a hydromorphic soil and its transformation with depth. Hyperfine Interact. 1998;112(1/4):235–238. https://doi.org/10.1023/A:1010802508927
  • Tran V-Q, Soive A, Baroghel-Bouny V. Modelisation of chloride reactive transport in concrete including thermodynamic equilibrium, kinetic control and surface complexation. Cem Concr Res. 2018;110:70–85.
  • Tran V-Q, Soive A, Bonnet S, et al. A numerical model including thermodynamic equilibrium, kinetic control and surface complexation in order to explain cation type effect on chloride binding capability of concrete. Constr Build Mater. 2018;191:608–618.
  • Soive A, Tran V-Q. External sulfate attack of cementitious materials: new insights gained through numerical modeling including dissolution/precipitation kinetics and surface complexation. Cem Concr Compos. 2017;83:263–272.
  • Soive A, Tran V-Q, Baroghel-Bouny V. Requirements and possible simplifications for multi-ionic transport models—case of concrete subjected to wetting-drying cycles in marine environment. Constr Build Mater. 2018;164:799–808.
  • Lasaga AC, Soler JM, Ganor J, et al. Chemical weathering rate laws and global geochemical cycles. Geochim Cosmochim Acta. 1994;58(10):2361–2386.
  • Baroghel-Bouny V, Dierkens M, Wang X, et al. Ageing and durability of concrete in lab and in field conditions: investigation of chloride penetration. J Sustain Cement Based Mater. 2013;2(2):67–110.
  • Lavergne F, Ben Fraj A, Bayane I, et al. Estimating the mechanical properties of hydrating blended cementitious materials: an investigation based on micromechanics. Cem Concr Res. 2018;104:37–60.
  • Dilnesa BZ, Lothenbach B, Renaudin G, et al. Synthesis and characterization of hydrogarnet Ca3(AlxFe1−x)2(SiO4)y(OH)4(3−y). Cem Concr Res. 2014;59:96–111.
  • Xu T, Spycher N, Sonnenthal E. TOUGHREACT user’s guide: a simulation program for non-isothermal multiphase reactive transport in variably saturated geologic media, version 2.0, 2012.
  • Blanc P, Lassin A, Piantone P, et al. Thermoddem: a geochemical database focused on low temperature water/rock interactions and waste materials. Appl Geochem. 2012;27(10):2107–2116.
  • Lothenbach B, Kulik DA, Matschei T, et al. Cemdata18: a chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cem Concr Res. 2019;115:472–506.
  • Diakonov I. Etude expérimentale de la complexation de l’aluminium avec l’ion sodium et de la spéciation du gallium et du fer (III) dans les solutions naturelles [PhD thesis]. Toulouse (France): Université Paul Sabatier; 1995.
  • Cox JD, Wagman DD, Medvedev VA. CODATA key values for thermodynamics. New York (NY): Hemisphere Publishing Corp; 1989.
  • Shock EL, Sassani DC, Willis M, et al. Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim Cosmochim Acta. 1997;61(5):907–950.
  • Balonis M, Lothenbach B, Saout GL, et al. Impact of chloride on the mineralogy of hydrated Portland cement systems. Cem Concr Res. 2010;40(7):1009–1022.
  • Tran V-Q. Contribution à la compréhension des mécanismes de dépassivation des armatures d’un béton exposé à l’eau de mer: théorie et modélisation thermochimique [PhD thesis]. Nantes (France): Ecole Centrale de Nantes; 2016.
  • Snow CL, Smith SJ, Lang BE, et al. Heat capacity studies of the iron oxyhydroxides akaganéite (β-FeOOH) and lepidocrocite (γ-FeOOH). J Chem Thermodyn. 2011;43(2):190–199.
  • Soive A, Baroghel-Bouny V, Lavergne F. Durability of concretes exposed to seawater and wetting drying cycles in field conditions during 20 years (accepted). In: 15th International Conference on Durability of Building Materials and Components, Barcelona, 2020.
  • Othmen I, Bonnet S, Schoefs F. Statistical investigation of different analysis methods for chloride profiles within a real structure in a marine environment. Ocean Eng. 2018;157:96–107.
  • Medeiros-Junior R, Lima M, Brito P, et al. Chloride penetration into concrete in an offshore platform-analysis of exposure conditions. Ocean Eng. 2015;103:78–87.
  • Serdar M, Meral C, Kunz M, et al. Spatial distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete. Cem Concr Res. 2015;71:93–105.
  • Antunes RA, Ichikawa RU, Martinez LG, et al. Characterization of corrosion products on carbon steel exposed to natural weathering and to accelerated corrosion tests. Int J Corros. 9.
  • Neff D, Dillmann P, Bellot-Gurlet L, et al. Corrosion of iron archaeological artefacts in soil: characterisation of the corrosion system. Corros Sci . 2005;47(2):515–535.
  • Blanco G, Bautista A, Takenouti H. EIS study of passivation of austenitic and duplex stainless steels reinforcements in simulated pore solutions. Cem Concr Compos. 2006;28(3):212–219.
  • Saremi M, Mahallati E. A study on chloride-induced depassivation of mild steel in simulated concrete pore solution. Cem Concr Res. 2002;32(12):1915–1921.
  • Elshami AA, Bonnet S, Khelidj A, et al. Novel anticorrosive zinc phosphate coating for corrosion prevention of reinforced concrete. Eur J Environ Civil Eng. 2017;21(5):572–593.
  • Elshami A, Bonnet S, Khelidj A, et al. Effectiveness of corrosion inhibitors in simulated concrete pore solution. Eur J Environ Civil Eng. 2020;24(13):2130–2150.
  • Gui J, Devine TM. The influence of sulfate ions on the surface enhanced Raman spectra of passive films formed on iron. Corros Sci. 1994;36(3):441–462.
  • Veleva L, Cebada MC. Marine corrosion in tropical environments. West conshohocken (PA): ASTM Edition; 2000.
  • Montemor MF, Simões AM, Ferreira MG. Analytical characterization of the passive film formed on steel in solutions simulating the concrete interstitial electrolyte. Corrosion. 1998;54(5):347–353.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.