292
Views
3
CrossRef citations to date
0
Altmetric
Articles

Durability of eco-friendly blended cements incorporating ceramic waste from different sources

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Pitarch AM, Reig L, Tomás AE, et al. Pozzolanic activity of tiles, bricks and ceramic sanitary-ware in eco-friendly Portland blended cements. J Clean Prod. 2021;279:123713.
  • GABC, IEA, and UNEP. Global status report for buildings and construction: towards a zero-emission, efficient and resilient buildings and construction sector; 2019.
  • Shahmansouri AA, Bengar HA, AzariJafari H. Life cycle assessment of eco-friendly concrete mixtures incorporating natural zeolite in sulfate-aggressive environment. Constr Build Mater. 2021;268:121136.
  • Fořt J, Černý R. Transition to circular economy in the construction industry: Environmental aspects of waste brick recycling scenarios. Waste Manag. 2020;118:510–520.
  • Pradhan S, Tiwari BR, Kumar S, and, et al. Comparative LCA of recycled and natural aggregate concrete using particle packing method and conventional method of design mix. J Clean Prod. 2019;228:679–691.
  • Vieira CS, Pereira PM. Use of recycled construction and demolition materials in geotechnical applications: a review. Resour Conserv Recycl. 2015;103:192–204.
  • Koyuncu H, Guney Y, Yılmaz G, et al. Utilization of ceramic wastes in the construction sector. KEM. 2004;264–268:2509–2512.
  • Topcu IB, Canbaz M. Utilization of crushed tile as aggregate in concrete. Iran J Sci Technol Trans B Eng. 2007;5:561–565.
  • de Brito J, Pereira AS, Correia JR. Mechanical behaviour of non-structural concrete made with recycled ceramic aggregates. Cem Concr Compos. 2005;27(4):429–433.
  • de Brito J. Abrasion resistance of concrete made with recycled aggregates. Int J Sustain Eng. 2010;3(1):58–64.
  • Correia JR, de Brito J, Pereira AS. Effects on concrete durability of using recycled ceramic aggregates. Mater Struct. 2006;39(2):169–177. https://doi.org/10.1617/s11527-005-9014-.
  • Abdullah MMAB, Hussin K, Ghazali CMR, et al. Concrete ceramic waste slab (CCWS). J Eng Res Educ. 2006;3:139–145.
  • Senthamarai RM, Manoharan PD. Concrete with ceramic waste aggregate. Cem Concr Compos. 2005; 27(9–10):910–913.
  • Cachim PB. Mechanical properties of brick aggregate concrete. Constr Build Mater. 2009;23(3):1292–1297.
  • Guerra I, Vivar I, Llamas B, et al. Eco-efficient concretes: the effects of using recycled ceramic material from sanitary installations on the mechanical properties of concrete. Waste Manag. 2009;29(2):643–646.
  • Dang J, Zhao J, Hu W, et al. Properties of mortar with waste clay bricks as fine aggregate. Constr Build Mater. 2018;166:898–907.
  • López V, Llamas B, Juan A, et al. Eco-efficient concretes: impact of the use of white ceramic powder on the mechanical properties of concrete. Biosyst Eng. 2007;96(4):559–564.
  • Torkittikul P, Chaipanich A. Utilization of ceramic waste as fine aggregate within Portland cement and fly ash concretes. Cem Concr Compos. 2010;32(6):440–449.
  • Silva J, De Brito J, Veiga R. Recycled red–clay ceramic construction and demolition waste for mortars production. J Mater Civ Eng. 2010;22(3):236–244.
  • Ge Z, Feng Y, Zhang H, et al. Use of recycled fine clay brick aggregate as internal curing agent for low water to cement ratio mortar. Constr Build Mater. 2020;264:120280–120280.
  • Zhang H, Yuan H, Ge Z, et al. Fresh and hardened properties of self-compacting concrete containing recycled fine clay brick aggregates. Mater Struct. 2021;54(4):1–13.
  • Bektas F, Turanli L, Wang K, et al. Comparative performance of ground clay brick in mitigation of alkali–silica reaction. J Mater Civ Eng. 2007;19(12):1070–1078.
  • ICE Database – Embobied carbón model of cement, mortar and concrete. http://www.circularecology.com/embodied-energy-and-carbon-footprint-database.html.
  • Rahhal VF, Trezza MA, Tironi A, et al. Complex characterization and behavior of waste fired brick powder–Portland cement system. Materials. 2019;12(10):1650–1650.
  • Gonçalves JP, Tavares LM, Toledo Filho RD, et al. Performance evaluation of cement mortars modified with metakaolin or ground brick. Constr Build Mater. 2009;23(5):1971–1979.
  • Lavat AE, Trezza MA, Poggi M. Characterization of ceramic roof tile wastes as pozzolanic admixture. Waste Manag. 2009;29(5):1666–1674.
  • Toledo Filho RD, Gonçalves JP, Americano BB, et al. Potential for use of crushed waste calcined-clay brick as a supplementary cementitious material in Brazil. Cem Concr Res. 2007;37(9):1357–1365.
  • Sánchez de Rojas MI, Marin F, Rivera J, et al. Morphology and properties in blended cements with ceramic wastes as a pozzolanic material. J Am Ceram Soc. 2006;89(12):3701–3705. https://ceramics.onlinelibrary.wiley.com/journal/15512916
  • Ay N, Ünal M. The use of waste ceramic tile in cement production. Cem Concr Res. 2000;30(3):497–499.
  • O’Farrell M, Sabir BB, Wild S. Strength and chemical resistance of mortars containing brick manufacturing clays subjected to different treatments. Cem Concr Compos. 2006;28(9):790–779.
  • Vejmelková E, Keppert M, Rovnaníková P, et al. Properties of high performance concrete containing fine-ground ceramics as supplementary cementitious material. Cem Concr Compos. 2012;34(1):55–61.
  • Heidari A, Tavakoli D. Performance of ceramic tile powder as a pozzolanic material in concrete. Int J Adv Mater Sci. 2012;3:1–11.
  • Pacheco-Torgal F, Jalali S. Reusing ceramic wastes in concrete. Constr Build Mater. 2010;24(5):832–838.
  • Ge Z, Gao Z, Sun R, et al. Mix design of concrete with recycled clay-brick-powder using the orthogonal design method. Constr Build Mater. 2012;31:289–293.
  • Hobbs DW. Alkali–silica reaction in concrete. ICE Publishing is a divisions of Thomas Telford; UK: 1988.
  • Sánchez de Rojas MI, Frías M, Rodríguez O, et al. Durability of blended cement pastes containing ceramic waste as a pozzolanic addition. J Am Ceram Soc. 2014;97(5):1543–1551.
  • El-Dieb AS, Kanaan DM. Ceramic waste powder an alternative cement replacement–characterization and evaluation. Sustain Matertechnol. 2018;17:e00063.
  • Kannan DM, Aboubakr SH, El-Dieb AS, et al. High performance concrete incorporating ceramic waste powder as large partial replacement of Portland cement. Constr Build Mater. 2017;144:35–41.
  • de Matos PR, Prudencio LR Jr., de Oliveira AL, et al. Use of porcelain polishing residue as a supplementary cementitious material in self-compacting concrete. Constr Build Mater. 2018;193:623–630. https://doi.org/10.1016/j.conbuildmat.2018.10.228.
  • Dean SW, Bektas F, Wang K, et al. Use of ground clay brick as a pozzolanic material in concrete. J Astm Int. 2008;5(10):101681–101610.
  • Wild S, Khatib JM, o'Farrell M. Sulphate resistance of mortar, containing ground brick clay calcined at different temperatures. Cem Concr Res. 1997;27(5):697–709.
  • O'Farrell M, Wild S, Sabir BB. Resistance to chemical attack of ground brick-PC mortar: part I. Sodium sulphate solution. Cem Concr Res. 1999;29(11):1781–1790..
  • Turanli L, Bektas F, Monteiro PJM. Use of ground clay brick as a pozzolanic material to reduce the alkali–silica reaction. Cem Concr Res. 2003;33(10):1539–1542.(03)00101-7
  • ASTM C150/C150M-20. Standard specification for Portland cement. West Conshohocken, PA: ASTM International; 2020. www.astm.org.
  • ASTM C618-19. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken, PA: ASTM International; 2019. www.astm.org.
  • Chakchouk A, Trifi L, Samet B, et al. Formulation of blended cement: Effect of process variables on clay pozzolanic activity. Constr Build Mater. 2009;23(3):1365–1373.
  • Puligilla S, Mondal P. Co-existence of aluminosilicate and calcium silicate gel characterized through selective dissolution and FTIR spectral subtraction. Cem Concr Res. 2015;70:39–49.
  • Percival HJ, Duncan JF, Foster PK. Interpretation of the kaolinite mullite reaction sequence from infrared absorption spectra. J Am Ceram Soc. 1974;57(2):57–61.
  • Sykes D, Sato R, Luth RW, et al. Water solubility mechanisms in KAlSi3O8 melts at high pressure. Geochim Cosmochim Acta. 1993;57(15):3575–3584.
  • Voll D, Angerer P, Beran A, et al. A new assignment of IR vibrational modes in mullite. Vib Spectrosc. 2002; 30(2):237–243.
  • Magi M, Lippmaa E, Samoson A, et al. Solid-state high-resolution silicon-29 chemical shifts in silicates. J Phys Chem. 1984;88(8):1518–1522.
  • Nampi PP, Moothetty P, Berry FJ, et al. Aluminosilicates with varying alumina–silica ratios: synthesis via a hybrid sol–gel route and structural characterisation. Dalton Trans. 2010;39(21):5101–5107.
  • Padmaja P, Anilkumar GM, Mukundan P, et al. Characterisation of stoichiometric sol–gel mullite by Fourier transform infrared spectroscopy. Int J Inorg Mater. 2001;3(7):693–698.(01)00189-1
  • Popa M, Kakihana M, Yoshimura M, et al. Zircon formation from amorphous powder and melt in the silica-rich region of the alumina–silica–zirconia system. J Non-Cryst Solids. 2006;352(52–54):5663–5669.
  • UNE-EN 196-5. Methods of testing cement. Pozzolanicity test for pozzolanic cement. London: British Standard Institution; 2011.
  • Powers TC. The non-evaporable water content of hardened Portland cement paste. ASTM Bull. 1949;158:68–75.
  • ASTM C1556-11a (2016). Standard test method for determining the apparent chloride diffusion coefficient of cementitious mixtures by bulk diffusion. West Conshohocken, PA: ASTM International; 2016. www.astm.org
  • ASTM C143/C143M. Standard test method for slump of hydrauliccement concrete. West Conshohocken, PA: ASTM International; 2020.
  • ASTM C39/C39M-21. Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM International; 2021. www.astm.org
  • ASTM C1152/C1152M-20. Standard test method for acid-soluble chloride in mortar and concrete. West Conshohocken, PA: ASTM International; 2020. www.astm.org
  • ASTM C1012/C1012M-18b. Standard test method for length change of hydraulic-cement mortars exposed to a sulfate solution. West Conshohocken, PA: ASTM International; 2018. www.astm.org
  • ASTM C157/C157M-17. Standard test method for length change of hardened hydraulic-cement mortar and concrete. West Conshohocken, PA: ASTM International; 2017. www.astm.org
  • ASTM C109/C109M-20b. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50 mm] cube specimens). West Conshohocken, PA: ASTM International; 2020. www.astm.org
  • González M, Rahhal V, Irassar EF, et al. Resistencia a los sulfatos de cementos ARS con adición de filler y puzolana. In Primer Congreso Internacional de Tecnología del Hormigón y 13a Reunión Técnica, Buenos Aires, Argentina, 1998.
  • ASTM C1567-21. Standard test method for determining the potential alkali–silica reactivity of combinations of cementitious materials and aggregate (accelerated mortar-bar method). West Conshohocken, PA: ASTM International; 2021. www.astm.org
  • ASTM C1260-21. Standard test method for potential alkali reactivity of aggregates (mortar-bar method). West Conshohocken, PA: ASTM International; 2021. www.astm.org.
  • ASTM C1437-20. Standard test method for flow of hydraulic cement mortar. West Conshohocken, PA: ASTM International; 2020. www.astm.org.
  • ISO 14040 SO 14040:2006/AMD 1 2020. Environmental management – Life cycle assessment – Principles and framework – Amendment 1
  • Lin KL, Wu HH, Shie JL, et al. Recycling waste brick from construction and demolition of buildings as pozzolanic materials. Waste Manage Res. 2010;28(7):653–659. https://doi.org/10.1177/2F0734242X09358735
  • de Lucas EA, Medina C, Frías M, et al. Clay-based construction and demolition waste as a pozzolanic addition in blended cements. Effect on sulfate resistance. Constr Build Mater. 2016;127:950–958.
  • Yu P, Kirkpatrick RJ, Poe B, et al. Structure of calcium silicate hydrate (C‐S‐H): near‐, mid‐, and far‐infrared spectroscopy. J Am Ceram Soc. 2004;82(3):742–748.
  • Trezza M. Estudio de las posibles alteraciones en el comportamiento del cemento Portland por incorporacion de impurezas (oxidos y sales inorganicas) durante el proceso de clinkerizacion [master’sthesis]. Buenos Aires: Universidad Nacional del Centro de la Provincia de Buenos Aires; 1998.
  • Matschei T, Lothenbach B, Glasser FP. The AFm phase in Portland cement. Cem Concr Res. 2007;37(2):118–130.
  • Zhang C, Wang A, Tang M, et al. The filling role of pozzolanic material. Cem Concr Res. 1996;26(6):943–947.(96)00064-6
  • Li S, Roy DM. Investigation of relations between porosity, pore structure, and Cl − diffusion of fly ash and blended cement pastes. Cem Concr Res. 1986;16(5):749–759.
  • Li LG, Zhuo ZY, Kwan AKH, et al. Cementing efficiency factors of ceramic polishing residue in compressive strength and chloride resistance of mortar. Powder Technol. 2020;200(367):163–171. https://doi.org/10.1016/0008-8846(86)90049-9.
  • Gonzalez MA, Irassar EF. Ettringite formation in low C3A Portland cement exposed to sodium sulfate solution. Cem Concr Res. 1997;27(7):1061–1071.
  • Cordoba G, Irassar EF. Sulfate performance of calcined illitic shales. Constr Build Mater. 2021;291:123215–123215.
  • Irassar EF. Sulfate attack on cementitious materials containing limestone filler: a review. Cem Concr Res. 2009;39(3):241–254.
  • Mehta PK. Sulfate attack on concrete: a critical review. Mater Sci Concr. 1992:105–130.
  • Rossetti A, Ikumi T, Segura I, et al. Sulfate performance of blended cements (limestone and illite calcined clay) exposed to aggressive environment after casting. Cem Concr Res. 2021;147:106495.
  • Samadi M, Huseien GF, Mohammadhosseini H, et al. Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars. J Clean Prod. 2020;266:121825.
  • Figueira RB, Sousa R, Coelho L, et al. Alkali–silica reaction in concrete: mechanisms, mitigation and test methods. Constr Build Mater. 2019;222:903–931.
  • Thomas M. The effect of supplementary cementing materials on alkali–silica reaction: a review. Cem Concr Res. 2011;41(12):1224–1231.
  • ASTM C1293-20a. Standard test method for determination of length change of concrete due to alkali–silica reaction. West Conshohocken, PA: ASTM International, 2020. www.astm.org.
  • Asociación de Fabricantes de Cemento Portland. Informe de indicadores de sostenibilidad de la industria argentina del cemento 2018–2019 (sustainability indicators report for the argentine cement industry 2018–2019) 2020:1–16.
  • Aroca N, Lemma R. G[D]moler, project proposed in the "odebrecht" national contest on ideas in sustainability, Argentina. 2013;88 [Unpublished Research Cordoba].
  • Huseien GF, Sam ARM, Shah KW, et al. Evaluation of alkali-activated mortars containing high volume waste ceramic powder and fly ash replacing GBFS. Constr Build Mater. 2019;210:78–92.
  • Presa C. Consumo energético del ciclo integral del agua en usos urbanos. (Energy consumption of the comprehensive water cycle in urban uses); 2016. Retrieved from https://ecodes.org/archivo/proyectos/archivo-ecodes/pages/especial/consumo-energetico-ciclo-integral-agua-usos-urbanos/index.html.
  • Flower DJ, Sanjayan JG. Green house gas emissions due to concrete manufacture. Int J Life Cycle Assess. 2007;12(5):282–288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.