326
Views
0
CrossRef citations to date
0
Altmetric
Articles

Dynamic flexural behavior of AR-glass textile reinforced concrete under low-velocity impact loading

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Parisi F, Menna C, Prota A. Fabric-Reinforced Cementitious Matrix (FRCM) composites: mechanical behavior and application to masonry walls. Fail Anal Biocomposites Fibre-Reinf Compos Hybrid Compos [Internet]. Elsevier; 2019. [cited 2019 Nov 11]. p. 199–227. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081022931000103.
  • Williams Portal N, Lundgren K, Wallbaum H, et al. Sustainable potential of textile-reinforced concrete. J Mater Civ Eng. 2015;27(7):04014207.
  • Valeri P, Guaita P, Baur R, et al. Textile reinforced concrete for sustainable structures: future perspectives and application to a prototype pavilion. Struct Concr. 2020;21(6):2251–2267.
  • Chróścielewski J, Miśkiewicz M, Pyrzowski Ł, et al. A novel sandwich footbridge - Practical application of laminated composites in bridge design and in situ measurements of static response. Compos Part B Eng. 2017;126:153–161.
  • Hegger J, Kulas C, Raupach M, et al. Tragverhalten und dauerhaftigkeit einer schlanken textilbetonbrücke. Beton- Stahlbetonbau. 2011;106(2):72–80.
  • Peled A. Confinement of damaged and nondamaged structural concrete with FRP and TRC sleeves. J Compos Constr. 2007;11(5):514–522.
  • Tsesarsky M, Katz A, Peled A, et al. Textile reinforced concrete (TRC) shells for strengthening and retrofitting of concrete elements: influence of admixtures. Mater Struct. 2015;48(1–2):471–484.
  • Tsesarsky M, Peled A, Katz A, et al. Strengthening concrete elements by confinement within textile reinforced concrete (TRC) shells – static and impact properties. Constr Build Mater. 2013;44:514–523.
  • Hegger J, Curbach M, Stark A, et al. Innovative design concepts: application of textile reinforced concrete to shell structures. Struct Concr. 2018;19(3):637–646.
  • Peled A, Cohen Z, Pasder Y, et al. Influences of textile characteristics on the tensile properties of warp knitted cement based composites. Cem Concr Compos. 2008;30(3):174–183.
  • Peled A, Mobasher B. Tensile behavior of fabric Cement-Based composites: pultruded and cast. J Mater Civ Eng. 2007;19(4):340–348.
  • Silva F de A, Butler M, Mechtcherine V, et al. Strain rate effect on the tensile behaviour of textile-reinforced concrete under static and dynamic loading. Mater Sci Eng A. 2011;528(3):1727–1734.
  • Zhu D, Peled A, Mobasher B. Dynamic tensile testing of fabric–cement composites. Constr Build Mater. 2011;25(1):385–395.
  • Zhu D, Mobasher B, Rajan SD. Non-contacting strain measurement for cement-based composites in dynamic tensile testing. Cem Concr Compos. 2012;34(2):147–155.
  • Yao Y, Silva FA, Butler M, et al. Tension stiffening in textile-reinforced concrete under high speed tensile loads. Cem Concr Compos. 2015;64:49–61.
  • Yao Y, Bonakdar A, Faber J, et al. Distributed cracking mechanisms in textile-reinforced concrete under high speed tensile tests. Mater Struct. 2016;49(7):2781–2798.
  • Gong T, Heravi AA, Alsous G, et al. The impact-tensile behavior of cementitious composites reinforced with carbon textile and short polymer fibers. Appl Sci. 2019;9(19):4048.
  • Zhu D, Gencoglu M, Mobasher B. Low velocity flexural impact behavior of AR glass fabric reinforced cement composites. Cem Concr Compos. 2009;31(6):379–387.
  • Peled A, Zhu D, Mobasher B. Impact behavior of 3D fabric reinforced cementitious composites. In: Parra-Montesinos GJ, Reinhardt HW, Naaman AE, editors. High perform fiber reinf cem compos 6 [internet]. Netherlands: Springer; 2012. p. 543–550. [cited 2017 Jan 9]. Available from: 10.1007/978-94-007-2436-5_66.
  • Vogel F, Holčapek O, Konvalinka P. Response of High-Performance fibre reinforced concrete reinforced by textile reinforcement to impact loading. Acta Polytech. 2016;56(4):328–335.
  • Liu S, Zhu D, Yao Y, et al. Effects of strain rate and temperature on the flexural behavior of basalt and glass textile–reinforced concrete. J Mater Civ Eng. 2018;30(8):04018172.
  • Liu S, Zhu D, Li G, et al. Flexural response of basalt textile reinforced concrete with pre-tension and short fibers under low-velocity impact loads. Constr Build Mater. 2018;169:859–876.
  • International Organization for Standardization. Plastics–determination of charpy impact properties. Part 2: instrumented impact test. Switzerland: International Organization for Standardization; 2020. Report No.: ISO 179 − 2: 2020.
  • Zhao W, Guo Q. Experimental study on impact and post-impact behavior of steel-concrete composite panels. Thin-Walled Struct. 2018;130:405–413.
  • Chen DH, Ushijima K. Estimation of the initial peak load for circular tubes subjected to axial impact. Thin-Walled Struct. 2011;49(7):889–898.
  • Gopinath S, Prakash A, Aahrthy R, et al. Investigations on the influence of matrix and textile on the response of textile reinforced concrete slabs under impact loading. Sādhanā. 2018;43(11):172.
  • Han L-H, Hou C-C, Zhao X-L, et al. Behaviour of high-strength concrete filled steel tubes under transverse impact loading. J Constr Steel Res. 2014;92:25–39.
  • Qu H, Li A, Huo J, et al. Dynamic performance of collar plate reinforced tubular T-joint with precompression chord. Eng Struct. 2017;141:555–570.
  • Cui P, Liu Y, Chen F, et al. Dynamic behaviour of square tubular T-joints under impact loadings. J Constr Steel Res. 2018;143:208–222.
  • Yousuf M, Uy B, Tao Z, et al. Impact behaviour of pre-compressed hollow and concrete filled mild and stainless steel columns. J Constr Steel Res. 2014;96:54–68.
  • Zhao DB, Yi Y, Sashi KK. Shear mechanisms in reinforced concrete beams under impact loading. J Struct Eng. 2017;143(9):04017089.
  • Aghdamy S, Thambiratnam DP, Dhanasekar M. Experimental investigation on lateral impact response of concrete-filled double-skin tube columns using horizontal-impact-testing system. Exp Mech. 2016;56(7):1133–1153.
  • Ranade R, Li VC, Heard WF, et al. Impact resistance of high strength-high ductility concrete. Cem Concr Res. 2017;98:24–35.
  • Hendy CR, Smith DA. EN 1992-1-1: Eurocode 2: design of concrete structures: Part 1-1: general rules and rules for buildings. London: Thomas Telford; 2007.
  • American Concrete Institute. Building code requirements and commentary for structural concrete. Farmington Hills: ACI; 2019.
  • CSA S806. Design and construction of building components with Fibre-Reinforced polymers. Ontario, Canada: Canadian Standards Association Mississauga; 2012.
  • GB50608-2010. Technical code for infrastructure application of FRP composites. Beijing: China Planning Press; 2011.
  • Zhang C, Gholipour G, Mousavi AA. Nonlinear dynamic behavior of simply-supported RC beams subjected to combined impact-blast loading. Eng Struct. 2019;181:124–142.
  • Sutton M, Wolters W, Peters W, et al. Determination of displacements using an improved digital correlation method. Image Vis Comput. 1983;1(3):133–139.
  • Bruck HA, McNeill SR, Sutton MA, et al. Digital image correlation using Newton-Raphson method of partial differential correction. Exp Mech. 1989;29(3):261–267.
  • Xing C, Tan Y, Liu X, et al. Research on local deformation property of asphalt mixture using digital image correlation. Constr Build Mater. 2017;140:416–423.
  • Lei D, Yang L, Xu W, et al. Experimental study on alarming of concrete micro-crack initiation based on wavelet packet analysis. Constr Build Mater. 2017;149:716–723.
  • Yuan F, Cheng L, Shao X, et al. Full-field measurement and fracture and fatigue characterizations of asphalt concrete based on the SCB test and stereo-DIC. Eng Fract Mech. 2020;235:107127.
  • Guo Q, Wang H, Gao Y, et al. Investigation of the low-temperature properties and cracking resistance of fiber-reinforced asphalt concrete using the DIC technique. Eng Fract Mech. 2020;229:106951.
  • Huang B-T, Li Q-H, Xu S-L, et al. Development of reinforced ultra-high toughness cementitious composite permanent formwork: experimental study and digital image correlation analysis. Compos Struct. 2017;180:892–903.
  • F de A S, Zhu D, Mobasher B, et al. Impact behavior of sisal fiber cement composites under flexural load. Aci Mater J. 2011;108:168–177.
  • Dey V, Bonakdar A, Mobasher B. Low-velocity flexural impact response of fiber-reinforced aerated concrete. Cem Concr Compos. 2014;49:100–110.
  • C09 Committee. Test method for flexural performance of fiber-reinforced concrete (using beam with third-point loading) [Internet]. ASTM International; 2019. [cited 2019 Jul 12]. Available from: http://www.astm.org/cgi-bin/resolver.cgi?C1609C1609M-19.
  • P C. Digital filtering of impact data. In: Kessler S, editor. Instrumented impact test plast compos mater [internet]. West Conshohocken (PA): ASTM International; 1986. [cited 2020 Jan 1]. p. 81–22. Available from: http://www.astm.org/doiLink.cgi?STP19375S.
  • Botelho Goliath K, T. Cardoso DC, de A. Silva F. Flexural behavior of carbon-textile-reinforced concrete I-section beams. Compos Struct. 2021;260:113540.
  • Vandenberghe N, Vermorel R, Villermaux E. Star-Shaped crack pattern of broken windows. Phys Rev Lett. 2013;110(17):174302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.