396
Views
1
CrossRef citations to date
0
Altmetric
Articles

Uniaxial tensile constitutive model of fiber reinforced concrete considering bridging effect and its numerical algorithm

, , , &

References

  • Aveston J, Cooper G A, and Kelly A. Single and multiple fracture. Prop Fiber Compos. London: IPC Science and Technology Press Ltd, 1971:15–24.
  • Dai J-G, Ueda T. Local bond stress slip relations for FRP sheets–concrete interfaces. In: 2 Vol. Fibre-reinforced polym. reinf. concr. struct. Singapore: World Scientific; 2003. p. 143–152.
  • Blanco A, Pujadas P, Cavalaro S, et al. Constitutive model for fibre reinforced concrete based on the Barcelona test. Cem Concr Compos. 2014;53:327–340.
  • Marti P, Pfyl T, Sigrist V, et al. Harmonized test procedures for steel fiber-reinforced concrete. Mater J. 1999;96:676–685.
  • Li VC, Wang Y, Backer S. A micromechanical model of tension-softening and bridging toughening of short random fiber reinforced brittle matrix composites. J Mech Phys Solids. 1991;39(5):607–625.
  • Li VC. Postcrack scaling relations for fiber reinforced cementitious composites. J Mater Civ Eng. 1992;4(1):41–57.
  • Soetens T, Van Gysel A, Matthys S, et al. A semi-analytical model to predict the pull-out behaviour of inclined hooked-end steel fibres. Constr Build Mater. 2013;43:253–265.
  • Zhou J, Li Y, Li N, et al. Interfacial shear strength of microwave processed carbon fiber/epoxy composites characterized by an improved fiber-bundle pull-out test. Compos Sci Technol. 2016;133:173–183.
  • Bao G, Song Y. Crack bridging models for fiber composites with slip-dependent interfaces. J Mech Phys Solids. 1993;41(9):1425–1444.
  • Lin Z, Li VC. Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces. J Mech Phys Solids. 1997;45(5):763–787.
  • Hajsadeghi M, Chin CS, Jones SW. Development of a generic three-dimensional finite element fibre pullout model. Constr Build Mater. 2018;185:354–368.
  • Zhang H, Huang YJ, Yang ZJ, et al. A discrete-continuum coupled finite element modelling approach for fibre reinforced concrete. Cem Concr Res. 2018;106:130–143.
  • Yang E-H, Wang S, Yang Y, et al. Fiber-bridging constitutive law of engineered cementitious composites. ACT. 2008;6(1):181–193.
  • Lin Z, Kanda T, Li VC. On interface property characterization and performance of fiber reinforced cementitious composites. Con Sci Eng. 1999;1:173–174.
  • Kanda T, Li VC. New micromechanics design theory for pseudostrain hardening cementitious composite. J Eng Mech. 1999;125(4):373–381.
  • Maalej M, Li VC, Hashida T. Effect of fiber rupture on tensile properties of short fiber composites. J Eng Mech. 1995;121(8):903–913.
  • Redon C, Li VC, Wu C, et al. Measuring and modifying interface properties of PVA fibers in ECC matrix. J Mater Civ Eng. 2001;13(6):399–406.
  • Li VC, Leung CKY. Steady-state and multiple cracking of short random fiber composites. J Eng Mech. 1992;118(11):2246–2264.
  • Huang T, Zhang YX, Su C, et al. Effect of slip–hardening interface behavior on fiber rupture and crack bridging in fiber-reinforced cementitious composites. J Eng Mech. 2015;141(10):04015035.
  • Li B, Chi Y, Xu L, et al. Cyclic tensile behavior of SFRC: experimental research and analytical model. Constr Build Mater. 2018;190:1236–1250.
  • Bian C, Wang J-Y, Guo J-Y. Damage mechanism of ultra-high performance fibre reinforced concrete at different stages of direct tensile test based on acoustic emission analysis. Constr Build Mater. 2021;267:120927.
  • Peng X, Meyer C. A continuum damage mechanics model for concrete reinforced with randomly distributed short fibers. Comput Struct. 2000;78(4):505–515.
  • Javanmardi MR, Maheri MR. Anisotropic damage plasticity model for concrete and its use in plastic hinge relocation in RC frames with FRP. Structures. 2017;12:212–226.
  • Jin C, Buratti N, Stacchini M, et al. Lattice discrete particle modeling of fiber reinforced concrete: experiments and simulations. Eur J Mech. 2016;57:85–107.
  • Mihai IC, Jefferson AD, Lyons P. A plastic-damage constitutive model for the finite element analysis of fibre reinforced concrete. Eng Fract Mech. 2016;159:35–62.
  • Hameed R, Sellier A, Turatsinze A, et al. Damage modeling of metallic fiber-reinforced concrete. Proc Eng. 2011;10:1670–1678.
  • Oh BH, Kim JC, Choi YC. Fracture behavior of concrete members reinforced with structural synthetic fibers. Eng Fract Mech. 2007;74(1–2):243–257.
  • Rots JG, Nauta P, Kuster GMA, et al. Smeared crack approach and fracture localization in concrete. HERON. 1985;30(1):1985.
  • Oliver J. A consistent characteristic length for smeared cracking models. Int J Numer Meth Eng. 1989;28(2):461–474.
  • Bi J, Huo L, Zhao Y, et al. Modified the smeared crack constitutive model of fiber reinforced concrete under uniaxial loading. Constr Build Mater. 2020;250:118916.
  • Caner FC, Bažant ZP, Wendner R. Microplane model M7f for fiber reinforced concrete. Eng Fract Mech. 2013;105:41–57.
  • Kupfer H, Hilsdorf HK, Rusch H. Behavior of concrete under biaxial stresses. J Proc. 1969;66(8):656–666.
  • Simulia D. Abaqus 6.11 analysis user’s manual. Aba. 2011;6:22.2.
  • Huo L, Bi J, Zhao Y, et al. Constitutive model of steel fiber reinforced concrete by coupling the fiber inclining and spacing effect. Constr Build Mater. 2021;280:122423.
  • Lu C, Leung CKY, Li VC. Numerical model on the stress field and multiple cracking behavior of engineered cementitious composites (ECC). Constr Build Mater. 2017;133:118–127.
  • Li Y, Li Y. Evaluation of elastic properties of fiber reinforced concrete with homogenization theory and finite element simulation. Constr Build Mater. 2019;200:301–309.
  • Hillerborg A, Modéer M, Petersson P-E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res. 1976;6(6):773–781.
  • Edalat-Behbahani A, Barros JAO, Ventura-Gouveia A. Three dimensional plastic-damage multidirectional fixed smeared crack approach for modelling concrete structures. Int J Solids Struct. 2017;115–116:104–125.
  • Sloan SW, Abbo AJ, Sheng D. Refined explicit integration of elastoplastic models with automatic error control. Eng Comput. 2001;18(1/2):121–154.
  • Sloan SW. Substepping schemes for the numerical integration of elastoplastic stress–strain relations. Int J Numer Meth Eng. 1987;24(5):893–911.
  • Li Z, Li F, Chang TYP, et al. Uniaxial tensile behavior of concrete reinforced with randomly distributed short fibers. Mater J. 1998;95:564–574.
  • Li VC, Wang Y, Backer S. Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix. Composites. 1990;21(2):132–140.
  • Caggiano A, Etse G, Martinelli E. Zero-thickness interface model formulation for failure behavior of fiber-reinforced cementitious composites. Comput Struct. 2012;98–99:23–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.