1,285
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Microbial induced calcite precipitation for self-healing of concrete: a review

, &

References

  • Talaiekhozani A, Keyvanfar A, Andalib R, et al. Application of Proteus mirabilis and Proteus vulgaris mixture to design self-healing concrete. Desalin Water Treat. 2014;52(19–21):3623–3630.
  • Zhang J, Liu Y, Feng T, et al. Immobilizing bacteria in expanded perlite for the crack self-healing in concrete. Constr Build Mater. 2017;148:610–617.
  • Nguyen TH, Ghorbel E, Fares H, et al. Bacterial self-healing of concrete and durability assessment. Cem Concr Compos. 2019;104:103340.
  • Kaur NP, Majhi S, Dhami NK, et al. Healing fine cracks in concrete with bacterial cement for an advanced non-destructive monitoring. Constr Build Mater. 2020;242:118151.
  • Silva FB, Boon N, De Belie N, et al. Industrial application of biological self-healing concrete: challenges and economical feasibility. JCB. 2015;21(1):31–38.
  • Kumar V, Singla S, Garg R. Strength and microstructure correlation of binary cement blends in presence of waste marble powder. Mater Today Proc. 2021;43:857–862.
  • Garg R, Garg R. Effect of zinc oxide nanoparticles on mechanical properties of silica fume-based cement composites. Mater Today Proc. 2021;43:778–783.
  • Garg R, Bansal M, Aggarwal Y. Strength, rapid chloride penetration and microstructure study of cement mortar incorporating micro and nano silica. Int J Electrochem Sci. 2016;11:3697–3713.
  • Garg R, Garg R. Performance evaluation of polypropylene fiber waste reinforced concrete in presence of silica fume Mater Today Proc. 2020: 6–13.
  • Garg R, Garg R, Singla S. Experimental investigation of electrochemical corrosion and chloride penetration of concrete incorporating colloidal nanosilica and silica fume. J Electrochem Sci Technol. 2021;12(4):440–452.
  • Suleiman AR, Nehdi ML. Effect of environmental exposure on autogenous self-healing of cracked cement-based materials. Cem Concr Res. 2018;111:197–208.
  • Davies R, Teall O, Pilegis M, et al. Large scale application of self-healing concrete: design, construction, and testing. Front Mater. 2018;5:1–12.
  • Jonkers HM, Thijssen A, Muyzer G, et al. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng. 2010;36(2):230–235.
  • Wong LS, Oweida AFM, Kong SY, et al. The surface coating mechanism of polluted concrete by candida ethanolica induced calcium carbonate mineralization. Constr Build Mater. 2020;257:119482.
  • Perito B, Mastromei G. Molecular basis of bacterial calcium carbonate precipitation. Prog Mol Subcell Biol. 2011;52:113–139.
  • Ercole C, Cacchio P, Botta AL, et al. Bacterially induced mineralization of calcium carbonate: the role of exopolysaccharides and capsular polysaccharides. Microsc Microanal. 2007;13(1):42–50.
  • Benzerara K, Skouri-Panet F, Li J, et al. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc Natl Acad Sci USA. 2014;111(30):10933–10938.
  • Weiner S. An overview of biomineralization processes and the problem of the vital effect. Rev Mineral Geochem. 2003;54(1):1–29.
  • Ganendra G, De Muynck WD, Ho A, et al. Formate oxidation-driven calcium carbonate precipitation by methylocystis parvus OBBP. Appl Environ Microbiol. 2014;80(15):4659–4667.
  • Salmasi F, Mostofinejad D. Investigating the effects of bacterial activity on compressive strength and durability of natural lightweight aggregate concrete reinforced with steel fibers. Constr Build Mater. 2020;251:119032.
  • Perito B, Marvasi M, Barabesi C, et al. A Bacillus subtilis cell fraction (BCF) inducing calcium carbonate precipitation: biotechnological perspectives for monumental stone reinforcement. J Cult Herit. 2014;15(4):345–351.
  • Head IM, Gray ND, Babenzien HD, et al. Uncultured giant sulfur bacteria of the genus achromatium. FEMS Microbiol Ecol. 2000;33:171–180.
  • Hammes F, Verstraete W. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol. 2002;1(1):3–7.
  • Dupraz C, Reid RP, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats. Earth-Sci Rev. 2009;96(3):141–162.
  • Dhami NK, Sudhakara Reddy M, Mukherjee A. Application of calcifying bacteria for remediation of stones and cultural heritages. Front Microbiol. 2014;5:304.
  • Achal V, Mukherjee A, Kumari D, et al. Biomineralization for sustainable construction – a review of processes and applications. Earth-Sci Rev. 2015;148:1–17.
  • Ersan YC. 2019. Overlooked strategies in exploitation of microorganisms in the field of building materials. Singapore: Springer; p. 19–45.
  • Reeburgh WS. Oceanic methane biogeochemistry. ChemInform. 2007;38(20):486–513.
  • Ruan S, Qiu J, Weng Y, et al. The use of microbial induced carbonate precipitation in healing cracks within reactive magnesia cement-based blends. Cem Concr Res. 2019;115:176–188.
  • Achal V, Pan X, Özyurt N. Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecol Eng. 2011;37(4):554–559.
  • Bachmeier KL, Williams AE, Warmington JR, et al. Urease activity in microbiologically-induced calcite precipitation. J Biotechnol. 2002;93(2):171–181.
  • Alonso MJC, Ortiz CEL, Perez SOG, et al. Improved strength and durability of concrete through metabolic activity of ureolytic bacteria. Environ Sci Pollut Res Int. 2018;25(22):21451–21458.
  • Stocks-Fischer S, Galinat JK, Bang SS. Microbiological precipitation of CaCO3. Soil Biol Biochem. 1999;31(11):1563–1571.
  • Mobley HLT, Hausinger RP. Microbial ureases: significance, regulation, and molecular characterization. Microbiol Rev. 1989;53(1):85–108.
  • Charpe AU, Latkar MV, Chakrabarti T. Microbially assisted cementation – a biotechnological approach to improve mechanical properties of cement. Constr Build Mater. 2017;135:472–476.
  • Ivan S, Branka S-S. Influence of the primary structure of enzymes on the formation of CaCO3 polymorphs: a comparison of plant (canavalia ensiformis) and bacterial (Bacillus pasteurii) ureases. Langmuir. 2005;21:8876–8882.
  • Zhu T, Dittrich M. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front Bioeng Biotechnol. 2016;4:4–21.
  • Adolphe J-P, Jean-Francois L, Jose P, et al. 1990. Procédé detraitement biologique d’une surface artificielle París. Francia European Patent 90400G97.0. (after French patent 8903517, 1989).
  • Venkata Siva Rama Prasad C, Vara Lakshmi TVS. Experimental investigation on bacterial concrete strength with Bacillus subtilis and crushed stone dust aggregate based on ultrasonic pulse velocity. Mater Today Proc. 2020;27:1111–1117.
  • Lucas SS, Moxham C, Tziviloglou E, et al. Study of self-healing properties in concrete with bacteria encapsulated in expanded clay. Sci Technol Mater. 2018;30:93–98.
  • Wang JY, Soens H, Verstraete W, et al. Self-healing concrete by use of microencapsulated bacterial spores. Cem Concr Res. 2014;56:139–152.
  • Nimafar M, Samali B, Hosseini SJ, et al. Use of bacteria externally for repairing cracks and improving properties of concrete exposed to high temperatures. Crystals. 2021;11(12):1503.
  • Yoosathaporn S, Tiangburanatham P, Bovonsombut S, et al. A cost effective cultivation medium for biocalcification of Bacillus pasteurii KCTC 3558 and its effect on cement cubes properties. Microbiol Res. 2016;186-187:132–138.
  • Chaurasia L, Bisht V, Singh LP, et al. A novel approach of biomineralization for improving micro and macro-properties of concrete. Constr Build Mater. 2019;195:340–351.
  • Basaran Bundur Z, Kirisits MJ, Ferron RD. Biomineralized cement-based materials: impact of inoculating vegetative bacterial cells on hydration and strength. Cem Concr Res. 2015;67:237–245.
  • De Muynck W, Cox K, Belie ND, et al. Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr Build Mater. 2008;22(5):875–885.
  • Chahal N, Siddique R, Rajor A. Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume. Constr Build Mater. 2012;37:645–651.
  • Erşan YÇ, Da Silva FB, Boon N, et al. Screening of bacteria and concrete compatible protection materials. Constr Build Mater. 2015;88:196–203.
  • Ameri F, Shoaei P, Bahrami N, et al. Optimum rice husk ash content and bacterial concentration in self-compacting concrete. Constr Build Mater. 2019;222:796–813.
  • Al-Tabbaa A, Lark B, Paine K, et al. Biomimetic cementitious construction materials for next-generation infrastructure. Proc Inst Civ Eng – Smart Infrastruct Constr. 2018;171(2):67–76.
  • Perez G, Gaitero JJ, Erkizia E, et al. Characterisation of cement pastes with innovative self-healing system based in epoxy-amine adhesive. Cem Concr Compos. 2015;60:55–64.
  • Mondal S, Ghosh A(Dey). Investigation into the optimal bacterial concentration for compressive strength enhancement of microbial concrete. Constr Build Mater. 2018;183:202–214.
  • Krishnapriya S, Venkatesh Babu DL, G PA. Isolation and identification of bacteria to improve the strength of concrete. Microbiol Res. 2015;174:48–55.
  • Siddique R, Singh K, Kunal P, et al. Properties of bacterial rice husk ash concrete. Constr Build Mater. 2016;121:112–119.
  • Wang J, Van Tittelboom K, De Belie N, et al. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Constr Build Mater. 2012;26(1):532–540.
  • Xu J, Wang X. Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material. Constr Build Mater. 2018;167:1–14.
  • Ivanov V, Stabnikov V, Stabnikova O, et al. Environmental safety and biosafety in construction biotechnology. World J Microbiol Biotechnol. 2019;35(2):0.
  • Harith IK. Study on polyurethane foamed concrete for use in structural applications. Case Stud Constr Mater. 2018;8:79–86.
  • Gao M, Guo J, Cao H, et al. Immobilized bacteria with pH-response hydrogel for self-healing of concrete. J Environ Manage. 2020;261:110225.
  • Zhang Y, Guo HX, Cheng XH. Role of calcium sources in the strength and microstructure of microbial mortar. Constr Build Mater. 2015;77:160–167.
  • Luo M, Qian C. Influences of bacteria-based self-healing agents on cementitious materials hydration kinetics and compressive strength. Constr Build Mater. 2016;121:659–663.
  • Erşan YÇ, Verbruggen H, De Graeve I, et al. Nitrate reducing CaCO3 precipitating bacteria survive in mortar and inhibit steel corrosion. Cem Concr Res. 2016;83:19–30.
  • Muynck D, Belie D. 2007. Improvement of concrete durability with the aid of bacteria Proc first Int Conf Self Heal Mater p. 1–11.
  • Fang C, He J, Achal V, et al. Tofu wastewater as efficient nutritional source in biocementation for improved mechanical strength of cement mortars. Geomicrobiol J. 2019;36(6):515–521.
  • Majumdar S, Sarkar M, Chowdhury T, et al. Use of bacterial protein powder in commercial fly ash pozzolana cements for high performance construction materials. OJCE. 2012;02(04):218–228.
  • Sahmaran M, Yildirim G, Erdem TK. Self-healing capability of cementitious composites incorporating different supplementary cementitious materials. Cem Concr Compos. 2013;35(1):89–101.
  • Özbay E, Şahmaran M, Lachemi M, et al. Self-healing of microcracks in high-volume fly-ash-incorporated engineered cementitious composites. ACI Mater J. 2013;110:33–43.
  • Palin D, Wiktor V, Jonkers HM. A bacteria-based self-healing cementitious composite for application in low-temperature marine environments. Biomimetics. 2017;2(3):13.
  • Seifan M, Samani AK, Berenjian A. Bioconcrete: next generation of self-healing concrete. Appl Microbiol Biotechnol. 2016;100(6):2591–2602.
  • Heveran CM, Williams SL, Qiu J, et al. Biomineralization and successive regeneration of engineered living building materials. Matter. 2020;2(2):481–494.
  • Chen H, Qian C, Huang H. Self-healing cementitious materials based on bacteria and nutrients immobilized respectively. Constr Build Mater. 2016;126:297–303.
  • Hosseini Balam N, Mostofinejad D, Eftekhar M. Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate concrete. Constr Build Mater. 2017;145:107–116.
  • Wang JY, De Belie N, Verstraete W. Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbiol Biotechnol. 2012;39(4):567–577.
  • Erşan YÇ, Boon N, Belie ND. 2015. Microbial self-healing concrete: denitrification as an enhanced and environment-friendly approach. 5th Int Conf Self-Healing Mater.
  • Wiktor V, Jonkers HM. Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem Concr Compos. 2011;33(7):763–770.
  • Alshalif AF, Irwan JM, Othman N, et al. Isolation of sulphate reduction bacteria (SRB) to improve compress strength and water penetration of bio-concrete. MATEC Web Conf. 2016;47:01016.
  • Teddy T, Irwan JM, Othman N. The influence of sulphate reduction bacteria on the durability of concrete in seawater condition. Pertanika J Sci Technol. 2017;25:117–122.
  • Bhaskar S, Anwar Hossain KM, Lachemi M, et al. Effect of self-healing on strength and durability of zeolite-immobilized bacterial cementitious mortar composites. Cem Concr Compos. 2017;82:23–33.
  • Wu M, Hu X, Zhang Q, et al. Growth environment optimization for inducing bacterial mineralization and its application in concrete healing. Constr Build Mater. 2019;209:631–643.
  • Sarkar A, Chatterjee A, Mandal S, et al. An alkaliphilic bacterium BKH4 of bakreshwar hot spring pertinent to bioconcrete technology. J Appl Microbiol. 2019;126(6):1742–1750.
  • O’Connell M, McNally C, Richardson MG. Biochemical attack on concrete in wastewater applications: a state of the art review. Cem Concr Compos. 2010;32(7):479–485.
  • Castanier S, Le Métayer-Levrel G, Perthuisot JP. Ca-carbonates precipitation and limestone genesis - the microbiogeologist point of view. Sediment Geol. 1999;126(1-4):9–23.
  • Cappitelli F, Zanardini E, Ranalli G, et al. Improved methodology for bioremoval of black crusts on historical stone artworks by use of sulfate-reducing bacteria. Appl Environ Microbiol. 2006;72(5):3733–3737.
  • Tayebani B, Mostofinejad D. Penetrability, corrosion potential, and electrical resistivity of bacterial concrete. J Mater Civ Eng. 2019;31(3):04019002.
  • Song Y, Chetty K, Garbe U, et al. A novel granular sludge-based and highly corrosion-resistant bio-concrete in sewers. Sci Total Environ. 2021;791:148270.
  • Pei R, Liu J, Wang S. Use of bacterial cell walls as a viscosity-modifying admixture of concrete. Cem Concr Compos. 2015;55:186–195.
  • Kanellopoulos A, Giannaros P, Al-Tabbaa A. The effect of varying volume fraction of microcapsules on fresh, mechanical and self-healing properties of mortars. Constr Build Mater. 2016;122:577–593.
  • Ghosh P, Mandal S, Chattopadhyay BD, et al. Use of microorganism to improve the strength of cement mortar. Cem Concr Res. 2005;35(10):1980–1983.
  • Cheng L, Cord-Ruwisch R. In situ soil cementation with ureolytic bacteria by surface percolation. Ecol Eng. 2012;42:64–72.
  • Achal V, Mukherjee A, Basu PC, et al. Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J Ind Microbiol Biotechnol. 2009;36(3):433–438.
  • Achal V, Mukherjee A, Reddy MS. Biocalcification by Sporosarcina pasteurii using corn steep liquor as the nutrient source. Ind Biotechnol. 2010;6(3):170–174.
  • Narayanasamy R, Alvarado A, Medrano JS, et al. Potential of soil bacteria from the comarca lagunera. North-East Mexico for Bioconcr Dev. 2013;Icshm2013:601–605.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.