510
Views
0
CrossRef citations to date
0
Altmetric
Articles

Incorporation of a high volume of cenosphere particles in low water-to-cement matrix for developing high strength and lightweight cementitious composites

, ORCID Icon, , &

References

  • Mousa A, Mahgoub M, Hussein M. Lightweight concrete in America: presence and challenges. Sustain Prod Consump. 2018;15:131–144.
  • Mishutin A, Kroviakov S, Mishutin N, et al. Modified expanded clay lightweight concretes for thin-walled floating structures. Proceedings of the 2nd International Conference on Concrete Sustainability (ICCS16). Madrid, Spain. Jun 2016. p741–747.
  • A. Committee, 213, ACI 213R-03 Guide for Structural Lightweight-Aggregate Concrete. 2009. p. 1–20.
  • Chandra S, Berntsson L. Lightweight aggregate concrete. New York: Noyes Publications/William Andrew Publishing; 2002.
  • Krakowiak KJ, Nannapaneni RG, Moshiri A, et al. Engineering of high specific strength and low thermal conductivity cementitious composites with hollow glass microspheres for high-temperature high-pressure applications. Cem Concr Compos. 2020;108:103514.
  • Uysal H, Demirboğa R, Şahin R, et al. The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete. Cem Concr Res. 2004;34(5):845–848.
  • Topçu İB, Uygunoğlu T. Properties of autoclaved lightweight aggregate concrete. Build Environ. 2007;42(12):4108–4116.
  • Mohammad M, Masad E, Seers T, et al. Properties and microstructure distribution of High-Performance thermal insulation concrete. Materials. 2020;13(9):2091. Epub 2020/05/07.
  • Sengul O, Azizi S, Karaosmanoglu F, et al. Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy Build. 2011;43(2-3):671–676.
  • Ranjbar N, Kuenzel C. Cenospheres: a review. Fuel. 2017;207:1–12.
  • White S, Case E. Characterization of fly ash from coal-fired power plants. J Mater Sci. 1990;25(12):5215–5219.
  • Wu Y, Wang J-Y, Monteiro PJM, et al. Development of ultra-lightweight cement composites with low thermal conductivity and high specific strength for energy efficient buildings. Constr Build Mater. 2015;87:100–112.
  • Deepthi MV, Sharma M, Sailaja RRN, et al. Mechanical and thermal characteristics of high density polyethylene–fly ash cenospheres composites. Mater Design. 2010;31(4):2051–2060.
  • Pandey V, Ray M, Kumar V. Assessment of water-quality parameters of groundwater contaminated by fly ash leachate near Koradi thermal power plant, Nagpur. Environ Sci Pollut Res Int. 2020;27(22):27422–27434.
  • Adesina A. Sustainable application of cenospheres in cementitious materials – overview of performance. Dev Built Environ. 2020;4:100029.
  • Wang J-Y, Yang Y, Liew J-YR, et al. Method to determine mixture proportions of workable ultra lightweight cement composites to achieve target unit weights. Cem Concr Compos. 2014;53:178–186.
  • Hanif A, Lu Z, Diao S, et al. Properties investigation of fiber reinforced cement-based composites incorporating cenosphere fillers. Constr Build Mater. 2017;140:139–149.
  • Xu B, Ma H, Hu C, et al. Influence of cenospheres on properties of magnesium oxychloride cement-based composites. Mater Struct. 2016;49(4):1319–1326.
  • Zhou H, Brooks AL. Thermal and mechanical properties of structural lightweight concrete containing lightweight aggregates and fly-ash cenospheres. Constr Build Mater. 2019;198:512–526.
  • Blanco F, Garcı́a P, Mateos P, et al. Characteristics and properties of lightweight concrete manufactured with cenospheres. Cem Concr Res. 2000;30(11):1715–1722.
  • Brooks AL, Zhou H, Hanna D. Comparative study of the mechanical and thermal properties of lightweight cementitious composites. Constr Build Mater. 2018;159:316–328.
  • Chen W, Qi Z, Zhang L, et al. Effects of cenosphere on the mechanical properties of cement-based composites. Constr Build Mater. 2020;261:120527.
  • Patel SK, Satpathy HP, Nayak AN, et al. Utilization of fly ash cenosphere for production of sustainable lightweight concrete. J Inst Eng India Ser A. 2019;101(1):179–194.
  • Losiewicz M, Halsey DP, Dews SJ, et al. An investigation into the properties of micro-sphere insulating concrete. Constr Build Mater. 1996;10(8):583–588.
  • Huang X, Ranade R, Zhang Q, et al. Mechanical and thermal properties of green lightweight engineered cementitious composites. Constr Build Mater. 2013;48:954–960.
  • Hanif A, Diao S, Lu Z, et al. Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres – mechanical and thermal insulating properties. Constr Build Mater. 2016;116:422–430.
  • Chia K, Zhang M, Liew J. High-strength ultra lightweight cement composite-material properties. Proceedings of the 9th International Symposium on High Performance Concrete Design, Verification and Utilization. Rotorua, New Zealand. Aug 2011. p. 9–11.
  • Rheinheimer V, Wu Y, Wu T, et al. Multi-scale study of high-strength low-thermal-conductivity cement composites containing cenospheres. Cem Concr Compos. 2017;80:91–103.
  • Jing R, Liu Y, Yan P. Uncovering the effect of fly ash cenospheres on the macroscopic properties and microstructure of ultra high-performance concrete (UHPC). Constr Build Mater. 2021;286:122977.
  • Du H. Properties of ultra-lightweight cement composites with nano-silica. Constr Build Mater. 2019;199:696–704.
  • Kang H, Lee N, Moon J. Elucidation of the hydration reaction of UHPC using the PONKCS method. Materials. 2020;13(20):4661.
  • Kang S-H, Hong S-G, Moon J. The use of rice husk ash as reactive filler in ultra-high performance concrete. Cem Concr Res. 2019;115:389–400.
  • Kang H, Moon J. Secondary curing effect on the hydration of ultra-high performance concrete. Constr Build Mater. 2021;298:123874.
  • Jung M, Lee Y-s, Hong S-G, et al. Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE). Cem Concr Res. 2020;131:106017.
  • Kang S-H, Hong S-G, Moon J. Importance of drying to control internal curing effects on field casting ultra-high performance concrete. Cem Concr Res. 2018;108:20–30.
  • Kang S-H, Hong S-G, Moon J. Shrinkage characteristics of heat-treated ultra-high performance concrete and its mitigation using superabsorbent polymer based internal curing method. Cem Concr Compos. 2018;89:130–138.
  • Lee N, Pae J, Kang S-H, et al. Development of high strength and lightweight cementitious composites using hollow glass micropshere in a low water-to-cement matrix. In: University SN, editor, 2021.
  • C230 A. Standard specification for flow table for use in tests of hydraulic cement. West Conshohocken (PA): ASTM Interanational; 2002.
  • ASTM C109 / C109M-20b. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). ASTM International, West Conshohocken; 2020, p. 1–12.
  • Snellings R, Chwast J, Cizer Ö, et al. Report of TC 238-SCM: hydration stoppage methods for phase assemblage studies of blended cements—results of a round robin test. Mater Struct. 2018;51(4):111.
  • Zhang J, Scherer GW. Comparison of methods for arresting hydration of cement. Cem Concr Res. 2011;41(10):1024–1036.
  • C. ASTM,177/C518. 2004, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus.
  • Chung S-Y, Elrahman MA, Stephan D, et al. The influence of different concrete additions on the properties of lightweight concrete evaluated using experimental and numerical approaches. Constr Build Mater. 2018;189:314–322.
  • Pae J, Zhang Y, Poh LH, et al. Three-dimensional transport properties of mortar with a high water-to-cement ratio using X-ray computed tomography. Constr Build Mater. 2021;281:122608.
  • Yu S, Xia M, Sanjayan J, et al. Microstructural characterization of 3D printed concrete. J Build Eng. 2021;44:102948.
  • Zhang Y, Qiao H, Qian R, et al. Relationship between water transport behaviour and interlayer voids of 3D printed concrete. Constr Build Mater. 2022;326:126731.
  • Satpathy HP, Patel SK, Nayak AN. Development of sustainable lightweight concrete using fly ash cenosphere and sintered fly ash aggregate. Constr Build Mater. 2019;202:636–655.
  • Lee N, Jeong Y, Kang H, et al. Heat-Induced acceleration of pozzolanic reaction under restrained conditions and consequent structural modification. Materials. 2020;13(13):2950.
  • Kang S-H, Lee J-H, Hong S-G, et al. Microstructural investigation of heat-treated ultra-high performance concrete for optimum production. Materials. 2017;10(9):1106.
  • Gül R, Okuyucu E, Türkmen İ, et al. Thermo-mechanical properties of fiber reinforced raw perlite concrete. Mater Lett. 2007;61(29):5145–5149.
  • Demirboğa R, Gül R. The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem Concr Res. 2003;33(5):723–727.
  • Soroka I, Setter N. The effect of fillers on strength of cement mortars. Cem Concr Res. 1977;7(4):449–456.
  • Yogendran V, Langan BW, Haque MN, et al. Silica fume in high-strength concrete. ACI Mater J. 1987;84:124–129.
  • Shih J-Y, Chang T-P, Hsiao T-C. Effect of nanosilica on characterization of Portland cement composite. Mater Sci Eng A. 2006;424(1-2):266–274.
  • Schachinger I, Hilbig H, Stengel T, et al. Effect of curing temperature at an early age on the long-term strength development of UHPC. Proceedings of the 2nd International Symposium on Ultra High Performance Concrete. Kassel University, Kassel, Gemany. 2008. p. 205–212.
  • Taylor HFW, Famy C, Scrivener KL. Delayed ettringite formation. Cem Concr Res. 2001;31(5):683–693.
  • Dixit A, Dai Pang S, Kang S-H, et al. Lightweight structural cement composites with expanded polystyrene (EPS) for enhanced thermal insulation. Cem Concr Compos. 2019;102:185–197.
  • Wang J-Y, Zhang M-H, Li W, et al. Stability of cenospheres in lightweight cement composites in terms of alkali–silica reaction. Cem Concr Res. 2012;42(5):721–727.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.