2,542
Views
4
CrossRef citations to date
0
Altmetric
Articles

Rheology and printability of Portland cement based materials: a review

, &

References

  • Chen Y, He S, Gan Y, et al. A review of printing strategies, sustainable cementitious materials and characterization methods in the context of extrusion-based 3D concrete printing. J Build Eng. 2022;45:103599.
  • Tay YWD, Panda B, Paul SC, et al. 3D printing trends in building and construction industry: a review. Virtual Phys Prototyp. 2017;12(3):261–276.
  • Al Rashid A, Khan SA, G. Al-Ghamdi S, et al. Additive manufacturing: Technology, applications, markets, and opportunities for the built environment. Autom Constr. 2020;118:103268.
  • Tay YW, Panda B, Paul SC, et al. Processing and properties of construction materials for 3D printing. MSF. 2016;861:177–181.
  • Lowke D, Dini E, Perrot A, et al. Particle-bed 3D printing in concrete construction – possibilities and challenges. Cem Concr Res. 2018;112:50–65.
  • Buswell RA, Leal de Silva WR, Jones SZ, et al. 3D printing using concrete extrusion: a roadmap for research. Cem Concr Res. 2018;112:37–49.
  • Menna C, Mata-Falcón J, Bos FP, et al. Opportunities and challenges for structural engineering of digitally fabricated concrete. Cem Concr Res. 2020;133:106079.
  • Dey D, Srinivas D, Panda B, et al. Processing of cementitious materials for 3D concrete printing. Singapore: Springer; 2023. p. 283–291.
  • Gosselin C, Duballet R, Roux P, et al. Large-scale 3D printing of ultra-high performance concrete – a new processing route for architects and builders. Mater Des. 2016;100:102–109.
  • Panda B, Tran J, et al. Material design, additive manufacturing, and performance of Cement-Based materials BT - Innovation in construction: a practical guide to transforming the construction industry. In: Ghaffar SH, Mullett P, Pei E, editors. Cham: Springer International Publishing; 2022. p. 301–320.
  • du Plessis A, Babafemi AJ, Paul SC, et al. Biomimicry for 3D concrete printing: a review and perspective. Addit Manuf. 2021;38:101823.
  • Wangler T, Roussel N, Bos FP, et al. Digital concrete: a review. Cem Concr Res. 2019;123:105780.
  • Kristombu Baduge S, Navaratnam S, Abu-Zidan Y, et al. Improving performance of additive manufactured (3D printed) concrete: A review on material mix design, processing, interlayer bonding, and reinforcing methods. Structures 2021;29:1597–1609.
  • Panda B, Tay YWD, Paul SC, et al. Current challenges and future potential of 3D concrete printing. Materialwiss Werkstofftech. 2018;49(5):666–673.
  • Mohan MK, Rahul AV, Schutter GD, et al. Extrusion-based concrete 3D printing from a material perspective: a state-of-the-art review. Cem Concr Compos. 2021;115:103855.
  • Hou S, Duan Z, Xiao J, et al. A review of 3D printed concrete: Performance requirements, testing measurements and mix design. Constr Build Mater. 2021;273:121745.
  • Khan MA. Mix suitable for concrete 3D printing: A review. Mater Today Proc. 2020;32:831–837.
  • Souza MT, Ferreira IM, Guzi de Moraes E, et al. 3D printed concrete for large-scale buildings: an overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects. J Build Eng. 2020;32:101833.
  • Lu B, Weng Y, Li M, et al. A systematical review of 3D printable cementitious materials. Constr Build Mater. 2019;207:477–490.
  • Nazar S, Yang J, Thomas BS, et al. Rheological properties of cementitious composites with and without nano-materials: a comprehensive review. J Clean Prod. 2020;272:122701.
  • Şahin HG, Mardani-Aghabaglou A. Assessment of materials, design parameters and some properties of 3D printing concrete mixtures; a state-of-the-art review. Constr Build Mater. 2022;316:125865.
  • Paul SC, van Zijl GPAG, Tan MJ, et al. A review of 3D concrete printing systems and materials properties: current status and future research prospects. RPJ. 2018;24(4):784–798.
  • Jiao D, Shi C, Yuan Q, et al. Effect of constituents on rheological properties of fresh concrete-A review. Cem Concr Compos. 2017;83:146–159.
  • Zhang C, Nerella VN, Krishna A, et al. Mix design concepts for 3D printable concrete: a review. Cem Concr Compos. 2021;122:104155.
  • Tramontin Souza M, Maia Ferreira I, Guzi de Moraes E, et al. Role of chemical admixtures on 3D printed Portland cement: Assessing rheology and buildability. Constr Build Mater. 2022;314:125666.
  • Ma B, Peng Y, Tan H, et al. Effect of hydroxypropyl-methyl cellulose ether on rheology of cement paste plasticized by polycarboxylate superplasticizer. Constr Build Mater. 2018;160:341–350.
  • Reiter L, Wangler T, Anton A, et al. Setting on demand for digital concrete – principles, measurements, chemistry, validation. Cem Concr Res. 2020;132:106047.
  • Chen Y, Chaves Figueiredo S, Li Z, et al. Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture. Cem Concr Res. 2020;132:106040.
  • Roussel N. Rheological requirements for printable concretes. Cem Concr Res. 2018;112:76–85.
  • Mechtcherine V, Bos FP, Perrot A, et al. Extrusion-based additive manufacturing with cement-based materials – production steps, processes, and their underlying physics: a review. Cem Concr Res. 2020;132:106037.
  • Weng Y, Li M, Tan MJ, et al. Design 3D printing cementitious materials via fuller thompson theory and Marson-Percy model. Constr Build Mater. 2018;163:600–610.
  • Tay YWD, Qian Y, Tan MJ. Printability region for 3D concrete printing using slump and slump flow test. Compos Part B Eng. 2019;174:106968.
  • Kruger J, Zeranka S, van Zijl G. 3D concrete printing: a lower bound analytical model for buildability performance quantification. Autom Constr. 2019;106:102904.
  • Zhang Y, Zhang Y, She W, et al. Rheological and harden properties of the high-thixotropy 3D printing concrete. Constr Build Mater. 2019;201:278–285.
  • Roussel N, Ovarlez G, Garrault S, et al. The origins of thixotropy of fresh cement pastes. Cem Concr Res. 2012;42(1):148–157.
  • Paul SC, Tay YWD, Panda B, et al. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Arch Civ Mech Eng. 2018;18(1):311–319.
  • Vallurupalli K, Farzadnia N, Khayat KH. Effect of flow behavior and process-induced variations on shape stability of 3D printed elements – a review. Cem Concr Compos. 2021;118:103952.
  • Nerella VN, Mechtcherine V. Virtual sliding pipe rheometer for estimating pumpability of concrete. Constr Build Mater. 2018;170:366–377.
  • Mohan MK, Rahul AV, Van Tittelboom K, et al. Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content. Cem Concr Res. 2021;139:106258.
  • Ducoulombier N, Carneau P, Mesnil R, et al. “The slug test”: Inline assessment of yield stress for Extrusion-Based additive manufacturing. In: Bos FP, Lucas SS, Wolfs RJM, editors. Second RILEM international conference on concrete digital fabrication. Cham: Springer International Publishing; 2020. p. 216–224.
  • Sanjayan JG, Jayathilakage R, Rajeev P. Vibration induced active rheology control for 3D concrete printing. Cem Concr Res. 2021;140:106293.
  • Barbosa MS, dos Anjos MAS, Cabral KC, et al. Development of composites for 3D printing with reduced cement consumption. Constr Build Mater. 2022;341:127775.
  • Rahul AV, Sharma A, Santhanam M. A desorptivity-based approach for the assessment of phase separation during extrusion of cementitious materials. Cem Concr Compos. 2020;108:103546.
  • Rahul AV, Santhanam M. Evaluating the printability of concretes containing lightweight coarse aggregates. Cem Concr Compos. 2020;109:103570.
  • Chaves Figueiredo S, Romero Rodríguez C, Ahmed ZY, et al. An approach to develop printable strain hardening cementitious composites. Mater Des. 2019;169:107651.
  • Chen Y, Li Z, Figueiredo SC, et al. Limestone and calcined Clay-Based sustainable cementitious materials for 3D concrete printing: a fundamental study of extrudability and early. Age Strength Dev Appl Sci. 2019;9:1809.
  • Pott U, Stephan D. Penetration test as a fast method to determine yield stress and structural build-up for 3D printing of cementitious materials. Cem Concr Compos. 2021;121:104066.
  • Toutou Z, Roussel N, Lanos C. The squeezing test: a tool to identify firm cement-based material’s rheological behaviour and evaluate their extrusion ability. Cem Concr Res. 2005;35(10):1891–1899.
  • Nerella VN, Näther M, Iqbal A, et al. Inline quantification of extrudability of cementitious materials for digital construction. Cem Concr Compos. 2019;95:260–270.
  • Ducoulombier N, Mesnil R, Carneau P, et al. The “slugs-test” for extrusion-based additive manufacturing: Protocol, analysis and practical limits. Cem Concr Compos. 2021;121:104074.
  • Jeong H, Han S-J, Choi S-H, et al. Rheological property criteria for buildable 3D printing concrete. Materials (Basel). 2019;12(4):657.
  • Wu Y, Liu C, Liu H, et al. Study on the rheology and buildability of 3D printed concrete with recycled coarse aggregates. J Build Eng. 2021;42:103030.
  • Zhang D-W, Wang D, Lin X-Q, et al. The study of the structure rebuilding and yield stress of 3D printing geopolymer pastes. Constr Build Mater. 2018;184:575–580.
  • Kruger J, Zeranka S, Zijl GV. A rheology-based quasi-static shape retention model for digitally fabricated concrete. Constr Build Mater. 2020;254:119241.
  • Suiker ASJ, Wolfs RJM, Lucas SM, et al. Elastic buckling and plastic collapse during 3D concrete printing. Cem Concr Res. 2020;135:106016.
  • Nerella VN, Beigh MAB, Fataei S, et al. Strain-based approach for measuring structural build-up of cement pastes in the context of digital construction. Cem Concr Res. 2019;115:530–544.
  • Reiter L. Structural build-up for digital fabrication with concrete - materials, methods and processes. Zurich, Switzerland: ETH; 2019.
  • Natanzi AS, McNally C, et al. Characterising concrete mixes for 3D printing. In: Bos FP, Lucas SS, Wolfs RJM editors. Cham: Springer International Publishing; 2020. p. 83–92.
  • Jayathilakage R, Rajeev P, Sanjayan J. Yield stress criteria to assess the buildability of 3D concrete printing. Constr Build Mater. 2020;240:117989.
  • Pham L, Panda B, Tran P. Fresh and hardened properties of 3D printable polymer-fibre-reinforced high-performance cementitious composite. Adv Cem Res. 2022;34(2):80–92.
  • Perrot A, Rangeard D, Pierre A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Mater Struct. 2016;49(4):1213–1220.
  • Bhattacherjee S, Santhanam M. Investigation on the effect of alkali-free aluminium sulfate based accelerator on the fresh properties of 3D printable concrete. Cem Concr Compos. 2022;130:104521.
  • Rubin AP, Hasse JA, Repette WL. The evaluation of rheological parameters of 3D printable concretes and the effect of accelerating admixture. Constr Build Mater. 2021;276:122221.
  • Wolfs RJM, Bos FP, Salet TAM. Early age mechanical behaviour of 3D printed concrete : Numerical modelling and experimental testing. Cem Concr Res. 2018;106:103–116.
  • Wolfs RJM, Bos FP, Salet TAM. Triaxial compression testing on early age concrete for numerical analysis of 3D concrete printing. Cem Concr Compos. 2019;104:103344.
  • Ivanova I, Mechtcherine V. Possibilities and challenges of constant shear rate test for evaluation of structural build-up rate of cementitious materials. Cem Concr Res. 2020;130:105974.
  • Pham L, Tran P, Sanjayan J. Steel fibres reinforced 3D printed concrete: Influence of fibre sizes on mechanical performance. Constr Build Mater. 2020;250:118785.
  • Jiao D, De Schryver R, Shi C, et al. Thixotropic structural build-up of cement-based materials: a state-of-the-art review. Cem Concr Compos. 2021;122:104152.
  • Alghamdi H, Neithalath N. Synthesis and characterization of 3D-printable geopolymeric foams for thermally efficient building envelope materials. Cem Concr Compos. 2019;104:103377.
  • Alghamdi H, Nair SAO, Neithalath N. Insights into material design, extrusion rheology, and properties of 3D-printable alkali-activated fly ash-based binders. Mater Des. 2019;167:107634.
  • Zhang Y, Zhang Y, Liu G, et al. Fresh properties of a novel 3D printing concrete ink. Constr Build Mater. 2018;174:263–271.
  • Kruger J, Zeranka S, van Zijl G. An ab initio approach for thixotropy characterisation of (nanoparticle-infused) 3D printable concrete. Constr Build Mater. 2019;224:372–386.
  • Pj K, Cho S, Zeranka S, et al. Multi-physics approach for improved thixotropy of cement-based materials for 3DPC. 1st Int Conf 3D Constr Print. 2018. p. 26–28.
  • Zhang Y, Zhang Y, Yang L, et al. Evaluation of aggregates, fibers and voids distribution in 3D printed concrete. J Sustain Cem Mater. 2022;:1–14.
  • Zou S, Xiao J, Duan Z, et al. On rheology of mortar with recycled fine aggregate for 3D printing. Constr Build Mater. 2021;311:125312.
  • Zou S, Xiao J, Ding T, et al. Printability and advantages of 3D printing mortar with 100% recycled sand. Constr Build Mater. 2021;273:121699.
  • Hamidi F, Aslani F. Additive manufacturing of cementitious composites: Materials, methods, potentials, and challenges. Constr Build Mater. 2019;218:582–609.
  • Shahzad Q, Wang X, Wang W, et al. Coordinated adjustment and optimization of setting time, flowability, and mechanical strength for construction 3D printing material derived from solid waste. Constr Build Mater. 2020;259:119854.
  • Yoris-Nobile AI, Lizasoain-Arteaga E, Slebi-Acevedo CJ, et al. Life cycle assessment (LCA) and multi-criteria decision-making (MCDM) analysis to determine the performance of 3D printed cement mortars and geopolymers. J Sustain Cem Mater. 2022;:1–18.
  • Chen M, Li L, Wang J, et al. Rheological parameters and building time of 3D printing sulphoaluminate cement paste modified by retarder and diatomite. Constr Build Mater. 2020;234:117391.
  • Marchon D, Kawashima S, Bessaies-Bey H, et al. Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry. Cem Concr Res. 2018;112:96–110.
  • Zhang C, Hou Z, Chen C, et al. Design of 3D printable concrete based on the relationship between flowability of cement paste and optimum aggregate content. Cem Concr Compos. 2019;104:103406.
  • Ma G, Li Z, Wang L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Constr Build Mater. 2018;162:613–627.
  • Li X, Zhang N, Yuan J, et al. Preparation and microstructural characterization of a novel 3D printable building material composed of copper tailings and iron tailings. Constr Build Mater. 2020;249:118779.
  • Liu Z, Li M, Weng Y, et al. Mixture design approach to optimize the rheological properties of the material used in 3D cementitious material printing. Constr Build Mater. 2019;198:245–255.
  • Panda B, Tan MJ. Rheological behavior of high volume fly ash mixtures containing micro silica for digital construction application. Mater Lett. 2019;237:348–351.
  • Rahul AV, Santhanam M, Meena H, et al. 3D printable concrete : Mixture design and test methods. Cem Concr Compos. 2019;97:13–23.
  • Muthukrishnan S, Kua HW, Yu LN, et al. Fresh properties of cementitious materials containing rice husk ash for construction 3D printing. J Mater Civ Eng. 2020;32:04020195.
  • Chen M, Liu B, Li L, et al. Rheological parameters, thixotropy and creep of 3D-printed calcium sulfoaluminate cement composites modified by bentonite. Compos Part B Eng. 2020;186:107821.
  • Khalil N, Aouad G, El Cheikh K, et al. Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars. Constr Build Mater. 2017;157:382–391.
  • Kruger PJ, van den Heever M, Cho S, et al. High-performance 3D printable concrete enhanced with nanomaterials. Proc Int Conf Sustain Mater Syst Struct. 2019;533–540.
  • Chen M, Yang L, Zheng Y, et al. Yield stress and thixotropy control of 3D-printed calcium sulfoaluminate cement composites with metakaolin related to structural build-up. Constr Build Mater. 2020;252:119090.
  • Navarrete I, Kurama Y, Escalona N, et al. Impact of physical and physicochemical properties of supplementary cementitious materials on structural build-up of cement-based pastes. Cem Concr Res. 2020;130:105994.
  • Dey D, Srinivas D, Panda B, et al. Use of industrial waste materials for 3D printing of sustainable concrete: a review. J Clean Prod. 2022;340:130749.
  • Chen Y, Romero Rodriguez C, Li Z, et al. Effect of different grade levels of calcined clays on fresh and hardened properties of ternary-blended cementitious materials for 3D printing. Cem Concr Compos. 2020;114.
  • Scrivener K, Martirena F, Bishnoi S, et al. Calcined clay limestone cements (LC3). Cem Concr Res. 2018;114:49–56.
  • Dhandapani Y, Santhanam M. Investigation on the microstructure-related characteristics to elucidate performance of composite cement with limestone-calcined clay combination. Cem Concr Res. 2020;129:105959.
  • Liu J, Nguyen-Van V, Panda B, et al. Additive manufacturing of sustainable construction materials and form-finding structures: a review on recent progresses. 3D Print Addit Manuf. 2022;9(1):12–34.
  • Long WJ, Lin C, Tao JL, et al. Printability and particle packing of 3D-printable limestone calcined clay cement composites. Constr Build Mater. 2021;282:122647.
  • Weng Y, Lu B, Li M, et al. Empirical models to predict rheological properties of fiber reinforced cementitious composites for 3D printing. Constr Build Mater. 2018;189:676–685.
  • Zhu B, Nematollahi B, Pan J, et al. 3D concrete printing of permanent formwork for concrete column construction. Cem Concr Compos. 2021;121:104039.
  • Rahman MK, Baluch MH, Malik MA. Thixotropic behavior of self compacting concrete with different mineral admixtures. Constr Build Mater. 2014;50:710–717.
  • Zhang X, Han J. The effect of ultra-fine admixture on the rheological property of cement paste. Cem Concr Res. 2000;30(5):827–830.
  • Ahari RS, Erdem TK, Ramyar K. Thixotropy and structural breakdown properties of self consolidating concrete containing various supplementary cementitious materials. Cem Concr Compos. 2015;59:26–37.
  • Kazemian A, Yuan X, Cochran E, et al. Cementitious materials for construction-scale 3D printing : Laboratory testing of fresh printing mixture. Constr Build Mater. 2017;145:639–647.
  • Yuan Q, Li Z, Zhou D, et al. A feasible method for measuring the buildability of fresh 3D printing mortar. Constr Build Mater. 2019;227:116600.
  • Panda B, Lim JH, Tan MJ. Mechanical properties and deformation behaviour of early age concrete in the context of digital construction. Compos Part B Eng. 2019;165:563–571.
  • Panda B, Noor Mohamed NA, Paul SC, et al. The effect of material fresh properties and process parameters on buildability and interlayer adhesion of 3D printed concrete. Materials 2019;12(13):2149.
  • Nguyen-Van V, Nguyen-Xuan H, Panda B, et al. 3D concrete printing modelling of thin-walled structures. Structures 2022;39:496–511.
  • Siddika A, Mamun MA, Ferdous W, et al. 3D-printed concrete: applications, performance, and challenges [internet]. J Sustain Cem Mater. 2020;9(3):127–164.
  • Le TT, Austin SA, Lim S, et al. Hardened properties of high-performance printing concrete. Cem Concr Res. 2012;42(3):558–566.
  • Nguyen NT, Bui T-T, Bui Q-B. Fiber reinforced concrete for slabs without steel rebar reinforcement: Assessing the feasibility for 3D-printed individual houses. Case Stud Constr Mater. 2022;16:e00950.
  • Ding T, Xiao J, Zou S, et al. Flexural properties of 3D printed fibre-reinforced concrete with recycled sand. Constr Build Mater. 2021;288:123077.
  • Ding T, Xiao J, Zou S, et al. Anisotropic behavior in bending of 3D printed concrete reinforced with fibers. Compos Struct. 2020;254:112808.
  • Le TT, Austin SA, Lim S, et al. Mix design and fresh properties for high-performance printing concrete. Mater Struct. 2012;45(8):1221–1232.
  • Tran MV, Cu YTH, Le CVH. Rheology and shrinkage of concrete using polypropylene fiber for 3D concrete printing. J Build Eng. 2021;44:103400.
  • Sun J, Aslani F, Lu J, et al. Fibre-reinforced lightweight engineered cementitious composites for 3D concrete printing. Ceram Int. 2021;47(19):27107–27121.
  • Sun X, Zhou J, Wang Q, et al. PVA fibre reinforced high-strength cementitious composite for 3D printing: Mechanical properties and durability. Addit Manuf. 2022;49:102500.
  • Panda B, Paul SC, Tan MJ. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Mater Lett. 2017;209:146–149.
  • Yang Y, Wu C, Liu Z, et al. Mechanical anisotropy of ultra-high performance fibre-reinforced concrete for 3D printing. Cem Concr Compos. 2022;125:104310.
  • Yang Y, Wu C, Liu Z, et al. Characteristics of 3D-printing ultra-high performance fibre-reinforced concrete under impact loading. Int J Impact Eng. 2022;164:104205.
  • Yang Y, Wu C, Liu Z, et al. 3D-printing ultra-high performance fiber-reinforced concrete under triaxial confining loads. Addit Manuf. 2022;50:102568.
  • Zhu B, Pan J, Nematollahi B, et al. Development of 3D printable engineered cementitious composites with ultra-high tensile ductility for digital construction. Mater Des. 2019;181:108088.
  • Ogura H, Nerella VN, Mechtcherine V. Developing and testing of Strain-Hardening Cement-Based composites (SHCC) in the context of 3D-printing. Materials (Basel). 2018;11(8):1375–1318.
  • Soltan DG, Li VC. A self-reinforced cementitious composite for building-scale 3D printing. Cem Concr Compos. 2018;90:1–13.
  • Arunothayan AR, Nematollahi B, Ranade R, et al. Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction. Constr Build Mater. 2020;257:119546.
  • Arunothayan AR, Nematollahi B, Ranade R, et al. Digital fabrication of eco-friendly ultra-high performance fiber-reinforced concrete. Cem Concr Compos. 2022;125:104281.
  • Arunothayan AR, Nematollahi B, Ranade R, et al. Fiber orientation effects on ultra-high performance concrete formed by 3D printing. Cem Concr Res. 2021;143:106384.
  • Leal da Silva WR, Fryda H, Bousseau J-N, et al. Evaluation of Early-Age concrete structural Build-Up for 3D concrete printing by oscillatory rheometry. Adv Intell Syst Comput. 2020;:35–47.
  • Jiao D, Shi C, De Schutter G. Magneto-rheology control in 3D concrete printing: a rheological attempt. Mater Lett. 2022;309:131374.
  • Bhattacherjee S, Santhanam M. Enhancing buildability of 3D printable concrete by spraying of accelerating admixture on surface. In Bos FP, Lucas SS, Wolfs RJM, et al. editors. Second RILEM international conference of concrete digital fabr. Cham: Springer International Publishing; 2020. p. 13–22.
  • Mohan MK, Rahul AV, De Schutter G, et al. Early age hydration, rheology and pumping characteristics of CSA cement-based 3D printable concrete. Constr Build Mater. 2021;275:122136.
  • Markin, Nerella Schröfl. Material design and performance evaluation of foam concrete for digital fabrication. Materials (Basel). 2019;12:2433.
  • Qian Y. Effect of polycarboxylate ether (PCE) superplasticizer on thixotropic structural build-up of fresh cement pastes over time. Constr Build Mater. 2021;291:123241.
  • Chen Y, Chaves Figueiredo S, Yalçinkaya Ç, et al. The effect of Viscosity-Modifying admixture on the extrudability of limestone and calcined Clay-Based cementitious material for Extrusion-Based 3D concrete printing. Materials (Basel). 2019;12(9):1374.
  • Liu C, Wang X, Chen Y, et al. Influence of hydroxypropyl methylcellulose and silica fume on stability, rheological properties, and printability of 3D printing foam concrete. Cem Concr Compos. 2021;122:104158.
  • Markin V, Krause M, Otto J, et al. 3D printing with foam concrete: from material design and testing to application and sustaintability. J Build Eng. 2021;43:102870.
  • Tarhan Y, Şahin R. Fresh and rheological performances of Air-Entrained 3D printable mortars. Materials (Basel). 2021;14(9):2409.
  • Breilly D, Fadlallah S, Froidevaux V, et al. Origin and industrial applications of lignosulfonates with a focus on their use as superplasticizers in concrete. Constr Build Mater. 2021;301:124065.
  • Hekal EE, Kishar EA. Effect of sodium salt of naphthalene-formaldehyde polycondensate on ettringite formation. Cem Concr Res. 1999;29(10):1535–1540.
  • Yilmaz VT, Glasser FP. Influence of sulphonated melamine formaldehyde superplasticizer on cement hydration and microstructure. Adv Cem Res. 1989;2(7):111–119.
  • Plank J, Hirsch C. Impact of zeta potential of early cement hydration phases on superplasticizer adsorption. Cem Concr Res. 2007;37(4):537–542.
  • Collepardi M. Admixtures - Enhancing concrete performance. In Proceedings of the International Conference held at the University of Dundee, Scotland, UK on 6 July 2005. Thomas Telford Ltd; 2005.
  • Ma G, Wang L. A critical review of preparation design and workability measurement of concrete material for largescale 3D printing. Front Struct Civ Eng. 2018;12(3):382–400.
  • Flatt R, Schober I, Roussel NBT. Superplasticizers and the rheology of concrete. In Understanding the Rheology of Concrete. Amsterdam, The Netherlands: Elsevier; 2012. p. 144–208.
  • Winnefeld F, Becker S, Pakusch J, et al. Effects of the molecular architecture of comb-shaped superplasticizers on their performance in cementitious systems. Cem Concr Compos. 2007;29(4):251–262.
  • Pan T, Jiang Y, Ji X. Interlayer bonding investigation of 3D printing cementitious materials with fluidity-retaining polycarboxylate superplasticizer and high-dispersion polycarboxylate superplasticizer. Constr Build Mater. 2022;330:127151.
  • Bessaies-Bey H, Khayat KH, Palacios M, et al. Viscosity modifying agents: Key components of advanced cement-based materials with adapted rheology. Cem Concr Res. 2022;152:106646.
  • Khayat KH. Viscosity-enhancing admixtures for cement-based materials — an overview. Cem Concr Compos. 1998;20(2-3):171–188.
  • Palacios M, Flatt RJ. Working mechanism of viscosity-modifying admixtures. In: Science and technology of concrete admixtures. Amsterdam, The Netherlands: Elsevier; 2016; p. 415–432.
  • Leemann A, Winnefeld F. The effect of viscosity modifying agents on mortar and concrete. Cem Concr Compos. 2007;29(5):341–349.
  • Patural L, Marchal P, Govin A, et al. Cellulose ethers influence on water retention and consistency in cement-based mortars. Cem Concr Res. 2011;41(1):46–55.
  • Sukontasukkul P, Panklum K, Maho B, et al. Effect of synthetic microfiber and viscosity modifier agent on layer deformation, viscosity, and open time of cement mortar for 3D printing application. Constr Build Mater. 2022;319:126111.
  • Yang X, Liu J, Li H, et al. Effect of triethanolamine hydrochloride on the performance of cement paste. Constr Build Mater. 2019;200:218–225.
  • Muthukrishnan S, Ramakrishnan S, Sanjayan J. Effect of alkali reactions on the rheology of one-part 3D printable geopolymer concrete. Cem Concr Compos. 2021;116:103899.
  • Chatterji S. Freezing of air-entrained cement-based materials and specific actions of air-entraining agents. Cem Concr Compos. 2003;25(7):759–765.
  • Siva M, Ramamurthy K, Dhamodharan R. Development of a green foaming agent and its performance evaluation. Cem Concr Compos. 2017;80:245–257.
  • Huang F, Li H, Yi Z, et al. The rheological properties of self-compacting concrete containing superplasticizer and air-entraining agent. Constr Build Mater. 2018;166:833–838.
  • Chica L, Alzate A. Cellular concrete review: New trends for application in construction. Constr Build Mater. 2019;200:637–647.
  • Lu B, Qian Y, Li M, et al. Designing spray-based 3D printable cementitious materials with fly ash cenosphere and air entraining agent. Constr Build Mater. 2019;211:1073–1084.
  • Sahu SS, Gandhi ISR, Khwairakpam S. State-of-the-Art review on the characteristics of surfactants and foam from foam concrete perspective. J Inst Eng India Ser A. 2018;99(2):391–405.
  • Wagh CD, Siva Ranjani I, Kamisetty G. A. Thermal properties of foamed concrete: a review. RILEM Bookseries. 2021;29:113–137.
  • Sahu SS, Gandhi ISR. Studies on influence of characteristics of surfactant and foam on foam concrete behaviour. J Build Eng. 2021;40:102333.
  • Hajimohammadi A, Ngo T, Mendis P. Enhancing the strength of pre-made foams for foam concrete applications. Cem Concr Compos. 2018;87:164–171.
  • Zhu H, Chen L, Xu J, et al. Experimental study on performance improvement of anionic surfactant foaming agent by xanthan gum. Constr Build Mater. 2020;230:116993.
  • Raj S, Krishnan JM, Ramamurthy K. Influence of admixtures on the characteristics of aqueous foam produced using a synthetic surfactant. Colloids Surfaces A Physicochem Eng Asp. 2022;643:128770.
  • Amran YHM, Farzadnia N, Ali AAA. Properties and applications of foamed concrete; a review. Constr Build Mater. 2015;101:990–1005.
  • Khwairakpam S, Ranjani Gandhi IS. Assessment of the potential of a naturally available foaming agent for use in the production of foam concrete. Mater Today Proc. 2020;32:896–903.
  • Cho S, van Rooyen A, Kearsley E, et al. Foam stability of 3D printable foamed concrete. J Build Eng. 2022;47:103884.
  • Markin V, Sahmenko G, Nerella VN, et al. Investigations on the foam concrete production techniques suitable for 3D-printing with foam concrete. IOP Conf Ser Mater Sci Eng. 2019;660(1):012039.
  • Cho S, Kruger J, van Rooyen A, et al. Rheology and application of buoyant foam concrete for digital fabrication. Compos Part B Eng. 2021;215:108800.
  • Panda B, Unluer C, Tan MJ. Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing. Compos Part B Eng. 2019;176:107290.
  • Papo A, Piani L. Effect of various superplasticizers on the rheological properties of Portland cement pastes. Cem Concr Res. 2004;34(11):2097–2101.
  • Sun C, Xiang J, Xu M, et al. 3D extrusion free forming of geopolymer composites: Materials modification and processing optimization. J Clean Prod. 2020;258:120986.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.