293
Views
2
CrossRef citations to date
0
Altmetric
Technical Reports

Poly(aspartic acid) superabsorbent polymers as biobased and biodegradable additives for self-sealing of cementitious mortar

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, et al. Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci. 2010;45(21):5711–5735.
  • Mechtcherine V, Wyrzykowski M, Schröfl C, et al. Application of super absorbent polymers (SAP) in concrete construction—update of RILEM state-of-the-art report. Mater Struct. 2021;54(2):80.
  • Schröfl C, Erk KA, Siriwatwechakul W, et al. Recent progress in superabsorbent polymers for concrete. Cem Concr Res. 2022;151:106648.
  • Zohuriaan-Mehr MJ, Kabiri K. Superabsorbent polymer materials: a review. Iran Polym J. 2008;17:447–451.
  • Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J. 2015;65:252–267.
  • Dey S, Kenneally D, Odio M, et al. Modern diaper performance: construction, materials, and safety review. Int J Dermatol. 2016;55:18–20.
  • Sadeghi M, Hosseinzadeh H. Synthesis of starch—poly(sodium acrylate-co-acrylamide) superabsorbent hydrogel with salt and pH-responsiveness properties as a drug delivery system. J Bioact Compat Polym. 2008;23(4):381–404.
  • Kim DW, Kim KS, Seo YG, et al. Novel sodium fusidate-loaded film-forming hydrogel with easy application and excellent wound healing. Int J Pharm. 2015;495(1):67–74.
  • Davies LC, Novais JM, Martins‐Dias S. Detoxification of olive mill wastewater using superabsorbent polymers. Environ Technol. 2004;25(1):89–100.
  • Hüttermann A, Orikiriza LJB, Agaba H. Application of superabsorbent polymers for improving the ecological chemistry of degraded or polluted lands. Clean Soil Air Water. 2009;37(7):517–526.
  • Demitri C, Scalera F, Madaghiele M, et al. Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int J Polym Sci. 2013;2013:1–6.
  • Parvathy PC, Jyothi AN, John KS, et al. Cassava starch based superabsorbent polymer as soil conditioner: Impact on soil physico-chemical and biological properties and plant growth. Clean Soil Air Water. 2014;42(11):1610–1617.
  • Guilherme MR, Aouada FA, Fajardo AR, et al. Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. Eur Polym J. 2015;72:365–385.
  • Thombare N, Mishra S, Siddiqui MZ, et al. Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications. Carbohydr Polym. 2018;185:169–178.
  • Ostrand MS, DeSutter TM, Daigh ALM, et al. Superabsorbent polymer characteristics, properties, and applications. Agrosystems, Geosci Environ. 2020;3:e20074.
  • Mignon A, Snoeck D, Dubruel P, et al. Crack mitigation in concrete: Superabsorbent polymers as key to success? Materials (Basel). 2017;10(3):237.
  • Torres-Lugo M, Peppas NA. Molecular design and in vitro studies of novel pH-sensitive hydrogels for the oral delivery of calcitonin. Macromolecules. 1999;32(20):6646–6651.
  • Pourjavadi A, Barzegar S. Synthesis and evaluation of pH and thermosensitive pectin-based superabsorbent hydrogel for oral drug delivery systems. Starch - Stärke. 2009;61(3–4):161–172.
  • Mignon A, De Belie N, Dubruel P, et al. Superabsorbent polymers: a review on the characteristics and applications of synthetic, polysaccharide-based, semi-synthetic and ‘smart’ derivatives. Eur Polym J. 2019;117:165–178.
  • Zohuriaan-Mehr MJ, Pourjavadi A, Salimi H, et al. Protein- and homo poly(amino acid)-based hydrogels with super-swelling properties. Polym Adv Technol. 2009;20(8):655–671.
  • Narune A, Prasad E, Allied Market Research [Internet]. Super absorbent polymer market by type (synthetic and natural), application (personal care, healthcare, agriculture & horticulture, and others), and production method (suspension polymerization, solution polymerization, and gel polymerization). [cited 2022 Mar 11]. Available from: https://www.alliedmarketresearch.com/super-absorbent-polymers-market.
  • Thombre SM, Sarwade BD. Synthesis and biodegradability of polyaspartic acid: a critical review. J Macromol Sci Part A Pure Appl Chem. 2005;42(9):1299–1315.
  • Sharma S, Dua A, Malik A. Polyaspartic acid based superabsorbent polymers. Eur Polym J. 2014;59:363–376.
  • Nakato T, Yoshitake M, Matsubara K, et al. Relationships between structure and properties of poly(aspartic acid)s. Macromolecules. 1998;31(7):2107–2113.
  • Adelnia H, Tran HDN, Little PJ, et al. Poly(aspartic acid) in biomedical applications: from polymerization, modification, properties, degradation, and biocompatibility to applications. ACS Biomater Sci Eng. 2021;7(6):2083–2105.
  • Jalalvandi E, Shavandi A. Polysuccinimide and its derivatives: Degradable and water soluble polymers (review). Eur Polym J. 2018;109:43–54.
  • Adelnia H, Blakey I, Little PJ, et al. Hydrogels based on poly(aspartic acid). Synthesis Appl. Front Chem. 2019;7:755.
  • Salakhieva DV, Gumerova DR, Akhmadishina RA, et al. Anti-Radical and cytotoxic activity of polysuccinimide and polyaspartic acid of different molecular weight. BioNanoSci. 2016;6(4):348–351.
  • Zakharchenko S, Sperling E, Ionov L. Fully biodegradable self-rolled polymer tubes: a candidate for tissue engineering scaffolds. Biomacromolecules. 2011;12(6):2211–2215.
  • Juriga D, Nagy K, Jedlovszky-Hajdú A, et al. Biodegradation and osteosarcoma cell cultivation on poly(aspartic acid) based hydrogels. ACS Appl Mater Interfaces. 2016;8(36):23463–23476.
  • Stroganov V, Pant J, Stoychev G, et al. 4D biofabrication: 3D cell patterning using shape-changing films. Adv Funct Mater. 2018;28(11):1706248.
  • Xu M, Zhao Y, Feng M. Polyaspartamide derivative nanoparticles with tunable surface charge achieve highly efficient cellular uptake and low cytotoxicity. Langmuir. 2012;28(31):11310–11318.
  • Dou XB, Hu Y, Zhao NN, et al. Different types of degradable vectors from low-molecular-weight polycation-functionalized poly(aspartic acid) for efficient gene delivery. Biomaterials. 2014;35(9):3015–3026.
  • Ma C, Zhang J, Guo L, et al. Cyclen grafted with poly[(aspartic acid)- co -Lysine]: preparation, assembly with plasmid DNA, and in vitro transfection studies. Mol Pharm. 2016;13(1):47–54.
  • Salakhieva D, Shevchenko V, Németh C, et al. Structure–biocompatibility and transfection activity relationships of cationic polyaspartamides with (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups. Int J Pharm. 2017;517(1-2):234–246.
  • Yavvari PS, Verma P, Mustfa SA, et al. A nanogel based oral gene delivery system targeting SUMOylation machinery to combat gut inflammation. Nanoscale. 2019;11(11):4970–4986.
  • Han S, Liu Y, Nie X, et al. Efficient delivery of antitumor drug to the nuclei of tumor cells by amphiphilic biodegradable poly(L-Aspartic acid-co-Lactic acid)/DPPE co-polymer nanoparticles. Small. 2012;8(10):1596–1606.
  • Park CW, Yang H-M, Woo M-A, et al. Completely disintegrable redox-responsive poly(amino acid) nanogels for intracellular drug delivery. J Ind Eng Chem. 2017;45:182–188.
  • Budai-Szűcs M, Kiss E, Szilágyi B, et al. Mucoadhesive cyclodextrin-modified thiolated poly(aspartic acid) as a potential ophthalmic drug delivery system. Polymers (Basel). 2018;10(2):199.
  • Krisch E, Gyarmati B, Barczikai D, et al. Poly(aspartic acid) hydrogels showing reversible volume change upon redox stimulus. Eur Polym J. 2018;105:459–468.
  • Sim T, Lim C, Cho YH, et al. Development of pH-sensitive nanogels for cancer treatment using crosslinked poly(aspartic acid- graft -imidazole)- block -poly(ethylene glycol). J Appl Polym Sci. 2018;135(20):46268.
  • Yang J, Wang F, Fang L, et al. The effects of aging tests on a novel chemical sand-fixing agent – polyaspartic acid. Compos Sci Technol. 2007;67(10):2160–2164.
  • Wei J, Yang H, Cao H, et al. Using polyaspartic acid hydro-gel as water retaining agent and its effect on plants under drought stress. Saudi J Biol Sci. 2016;23(5):654–659.
  • Lü S, Feng C, Gao C, et al. Multifunctional environmental smart fertilizer based on l-Aspartic acid for sustained nutrient release. J Agric Food Chem. 2016;64(24):4965–4974.
  • Jensen OM, Hansen PF. Water-entrained cement-based materials: I. Principles and theoretical background. Cem Concr Res. 2001;31(4):647–654.
  • Craeye B, Geirnaert M, De Schutter G. Super absorbing polymers as an internal curing agent for mitigation of early-age cracking of high-performance concrete bridge decks. Constr Build Mater. 2011;25(1):1–13.
  • Mechtcherine V, Gorges M, Schroefl C, et al. Effect of internal curing by using superabsorbent polymers (SAP) on autogenous shrinkage and other properties of a high-performance fine-grained concrete: results of a RILEM round-robin test. Mater Struct. 2014;47(3):541–562.
  • Justs J, Wyrzykowski M, Bajare D, et al. Internal curing by superabsorbent polymers in ultra-high performance concrete. Cem Concr Res. 2015;76:82–90.
  • Lee HXD, Wong HS, Buenfeld NR. Potential of superabsorbent polymer for self-sealing cracks in concrete. Adv Appl Ceram. 2010;109(5):296–302.
  • Snoeck D, Steuperaert S, Van Tittelboom K, et al. Visualization of water penetration in cementitious materials with superabsorbent polymers by means of neutron radiography. Cem Concr Res. 2012;42(8):1113–1121.
  • Hong G, Choi S. Rapid self-sealing of cracks in cementitious materials incorporating superabsorbent polymers. Constr Build Mater. 2017;143:366–375.
  • Tenório Filho JR, Vermoesen E, Mannekens E, et al. Enhanced durability performance of cracked and uncracked concrete by means of smart in-house developed superabsorbent polymers with alkali-stable and -unstable crosslinkers. Constr Build Mater. 2021;297:123812.
  • Lee HXD, Wong HS, Buenfeld NR. Self-sealing of cracks in concrete using superabsorbent polymers. Cem Concr Res. 2016;79:194–208.
  • Snoeck D, Van Tittelboom K, Steuperaert S, et al. Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers. J Intell Mater Syst Struct. 2014;25(1):13–24.
  • Snoeck D, Dewanckele J, Cnudde V, et al. X-ray computed microtomography to study autogenous healing of cementitious materials promoted by superabsorbent polymers. Cem Concr Compos. 2016;65:83–93.
  • Araújo M, Van Vlierberghe S, Feiteira J, et al. Cross-linkable polyethers as healing/sealing agents for self-healing of cementitious materials. Mater Des. 2016;98:215–222.
  • Van Tittelboom K, De Belie N, De Muynck W, et al. Use of bacteria to repair cracks in concrete. Cem Concr Res. 2010;40(1):157–166.
  • Pareek S, Shrestha KC, Suzuki Y, et al. Feasibility of externally activated self-repairing concrete with epoxy injection network and Cu-Al-Mn superelastic alloy reinforcing bars. Smart Mater Struct. 2014;23(10):105027.
  • Ryu J-S. An experimental study on the repair of concrete crack by electrochemical technique. Mat Struct. 2001;34(7):433–437.
  • Hager MD, Greil P, Leyens C, et al. Self-healing materials. Adv Mater. 2010;22(47):5424–5430.
  • Edvardsen C. Water permeability and autogenous healing of cracks in concrete. ACI Mater J. 1999;96:448–454.
  • Wu M, Johannesson B, Geiker M. A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Constr Build Mater. 2012;28(1):571–583.
  • Yang Y, Lepech MD, Yang E-H, et al. Autogenous healing of engineered cementitious composites under wet–dry cycles. Cem Concr Res. 2009;39(5):382–390.
  • Snoeck D, De Belie N. From straw in bricks to modern use of microfibers in cementitious composites for improved autogenous healing – A review. Constr Build Mater. 2015;95:774–787.
  • Van Tittelboom K, Wang J, Araújo M, et al. Comparison of different approaches for self-healing concrete in a large-scale lab test. Constr Build Mater. 2016;107:125–137.
  • Tsuji M, Okuyama A, Enoki K, et al. Development of new concrete admixture 618. preventing from leakage of water through cracks. JCA Proc Cem Concr. 1998;52:418–423.
  • Jensen OM, Hansen PF. Water-entrained cement-based materials: II. Experimental observations. Cem Concr Res. 2002;32(6):973–978.
  • Tangkokiat P, Thanapornpavornkul T, Muangkaew S, et al. Characterization of neutral versus anionic superabsorbent polymers (SAPs) in ion-rich solutions for their use as internal curing agents. 3rd Int Conf Appl Superabsorbent Polym Other New Admixtures Towar Smart Concr. 2020. p. 38–45.
  • Tenório Filho JR, Mannekens E, Van Tittelboom K, et al. Innovative SuperAbsorbent polymers (iSAPs) to construct crack-free reinforced concrete walls: An in-field large-scale testing campaign. J Build Eng. 2021;43:102639.
  • Zlopasa J, Koenders E, Picken S. A novel bio-based curing compound for cement-based materials. In: Mechtcherine V, Schröfl C, editors. Int RILEM conf appl superabsorbent polym other new admixtures concr constr. France: RILEM publications S.A.R.L.; 2014. p. 47.
  • Wang J, Mignon A, Snoeck D, et al. Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing. Front Microbiol. 2015;6: 1–14.
  • Mignon A, Snoeck D, D’Halluin K, et al. Alginate biopolymers: Counteracting the impact of superabsorbent polymers on mortar strength. Constr Build Mater. 2016;110:169–174.
  • Aday AN, Osio-Norgaard J, Foster KEO, et al. Carrageenan-based superabsorbent biopolymers mitigate autogenous shrinkage in ordinary Portland cement. Mater Struct. 2018;51(2):37.
  • Aday AN, Srubar WV. Biobased polymers for mitigating early- and late-age cracking in concrete. In: Bio-Based Materials and Biotechnologies for Eco-Efficient Construction. Cambridge, England: Woodhead Publishing; 2020. p. 19–41.
  • Snoeck D, Moerkerke B, Mignon A, et al. In-situ crosslinking of superabsorbent polymers as external curing layer compared to internal curing to mitigate plastic shrinkage. Constr Build Mater. 2020;262:120819.
  • Mignon A, Devisscher D, Graulus G-J, et al. Combinatory approach of methacrylated alginate and acid monomers for concrete applications. Carbohydr Polym. 2017;155:448–455.
  • Snoeck D, Dubruel P, De Belie N. How to seal and heal in cementitious materials by using superabsorbent polymers cracks. In: Mechtcherine V, Schröfl C, editors. Proc pro 95 Int RILEM conf appl superabsorbent polym other new admixtures concr constr. France: RILEM publications S.A.R.L.; 2014. p. 375–384.
  • Markovic M, Van Hoorick J, Hölzl K, et al. Hybrid tissue engineering scaffolds by combination of three-dimensional printing and cell photoencapsulation. J Nanotechnol Eng Med. 2015;6:210011–210017.
  • Molnar K, Juriga D, Nagy PM, et al. Electrospun poly(aspartic acid) gel scaffolds for artificial extracellular matrix. Polym Int. 2014;63(9):1608–1615.
  • Németh C, Szabó D, Gyarmati B, et al. Effect of side groups on the properties of cationic polyaspartamides. Eur Polym J. 2017;93:805–814.
  • Snoeck D, Schröfl C, Mechtcherine V. Recommendation of RILEM TC 260-RSC: testing sorption by superabsorbent polymers (SAP) prior to implementation in cement-based materials. Mater Struct. 2018;51(5):116.
  • Snoeck D, Schaubroeck D, Dubruel P, et al. Effect of high amounts of superabsorbent polymers and additional water on the workability, microstructure and strength of mortars with a water-to-cement ratio of 0.50. Constr Build Mater. 2014;72:148–157.
  • Jakobsen UH, Pade C, Thaulow N, et al. Automated air void analysis of hardened concrete — a Round Robin study. Cem Concr Res. 2006;36(8):1444–1452.
  • Liao W-C, Chen P-S, Hung C-W, et al. An innovative test method for tensile strength of concrete by applying the strut-and-Tie methodology. Materials (Basel). 2020;13(12):2776.
  • Van Mullem T. Development of standard testing methods to evaluate the self-healing efficiency of concrete. Ghent, Belgium: Ghent University; 2021.
  • Shin KJ, Bae W, Choi S-W, et al. Parameters influencing water permeability coefficient of cracked concrete specimens. Constr Build Mater. 2017;151:907–915.
  • Sandoval GFB, Galobardes I, Teixeira RS, et al. Comparison between the falling head and the constant head permeability tests to assess the permeability coefficient of sustainable pervious concretes. Case Stud Constr Mater. 2017;7:317–328.
  • Van Hoorick J, Gruber P, Markovic M, et al. Highly reactive thiol-norbornene photo-click hydrogels: toward improved processability. Macromol. Rapid Commun. 2018;39(14):1800181.
  • Lin C-C, Ki CS, Shih H. Thiol-norbornene photoclick hydrogels for tissue engineering applications. J Appl Polym Sci. 2015;132:41563.
  • Chiou B-S, English RJ, Khan SA. Rheology and photo-cross-linking of thiol − ene polymers. Macromolecules. 1996;29(16):5368–5374.
  • Yang L, Li Y, Qian B, et al. Polyaspartic acid as a corrosion inhibitor for WE43 magnesium alloy. J Magnes Alloy. 2015;3(1):47–51.
  • Andersson K, Allard B, Bengtsson M, et al. Chemical composition of cement pore solutions. Cem Concr Res. 1989;19(3):327–332.
  • Kang S-H, Hong S-G, Moon J. Importance of monovalent ions on water retention capacity of superabsorbent polymer in cement-based solutions. Cem Concr Compos. 2018;88:64–72.
  • Hancock RD, Martell AE. Ligand design for selective complexation of metal ions in aqueous solution. Chem Rev. 1989;89(8):1875–1914.
  • Lee HXD, Wong HS, Buenfeld NR. Effect of alkalinity and calcium concentration of pore solution on the swelling and ionic exchange of superabsorbent polymers in cement paste. Cem Concr Compos. 2018;88:150–164.
  • Van Der Putten J, Snoeck D, De Coensel R, et al. Early age shrinkage phenomena of 3D printed cementitious materials with superabsorbent polymers. J Build Eng. 2021;35:102059.
  • Laustsen S, Hasholt MT, Jensen OM. Void structure of concrete with superabsorbent polymers and its relation to frost resistance of concrete. Mater Struct. 2015;48(1–2):357–368.
  • Mignon A, Snoeck D, Schaubroeck D, et al. pH-responsive superabsorbent polymers: a pathway to self-healing of mortar. React Funct Polym. 2015;93:68–76.
  • Hasholt MT, Jensen OM, Kovler K, et al. Can superabsorent polymers mitigate autogenous shrinkage of internally cured concrete without compromising the strength? Constr Build Mater. 2012;31:226–230.
  • Snoeck D. Self-healing and microstructure of cementitious materials with microfibres and superabsorbent polymers. Ghent, Belgium: Ghent University; 2015.
  • Snoeck D, Pel L, De Belie N. Autogenous healing in cementitious materials with superabsorbent polymers quantified by means of NMR. Sci Rep. 2020;10(1):642.
  • Van Tittelboom K, De Belie N. Self-healing in cementitious materials—A review. Materials (Basel). 2013;6(6):2182–2217.
  • Rimshin V, Truntov P. Determination of carbonation degree of existing reinforced concrete structures and their restoration. E3S Web Conf. 2019;135:03015. Rudoy D, Murgul V, editors.
  • Lo Y, Lee HM. Curing effects on carbonation of concrete using a phenolphthalein indicator and fourier-transform infrared spectroscopy. Build Environ. 2002;37(5):507–514.
  • Chang C-F, Chen J-W. The experimental investigation of concrete carbonation depth. Cem Concr Res. 2006;36(9):1760–1767.
  • von Greve-Dierfeld S, Lothenbach B, Vollpracht A, et al. Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC. Mater Struct. 2020;53(6):136.
  • Snoeck D, Roigé N, Manso S, et al. The effect of (and the potential of recycled) superabsorbent polymers on the water retention capability and bio-receptivity of cementitious materials. Resour Conserv Recycl. 2022;177:106016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.