157
Views
0
CrossRef citations to date
0
Altmetric
Technical Reports

Visible light antibacterial potential of graphene-TiO2 cementitious composites for self-sterilization surface

ORCID Icon, &

References

  • Fujishima A, Zhang X. Account/revue: titanium dioxide photocatalysis: present situation and future approaches. Comptes rendus – Chimie. 2006;9(5–6):750–760.
  • Guerrini GL. Photocatalytic performances in a city tunnel in rome: NOx monitoring results. Constr Build Mater. 2012;27(1):165–175.
  • Hamdany AH, Satyanaga A, Zhang D, et al. Photocatalytic cementitious material for eco-efficient construction—a systematic literature review. Appl Sci. 2022;12:8741.
  • Ohama Y, VAN Gemert D. 2011. Applications of titanium dioxide photocatalysis to construction materials. [electronic resource]: state-of-the-Art report of the RILEM technical committee 194-TDP. Dordrecht: Springer Science + Business Media B.V.
  • Bawono AA, Tan ZH, Hamdany AH, et al. Bright and slip-proof engineered cementitious composites with visible light activated photo-catalysis property for pavement in tunnels. Cem Concr Compos. 2020;114:103788.
  • Guo M-Z, Ling T-C, Poon CS. Photocatalytic NOx degradation of concrete surface layers intermixed and spray-coated with nano-TiO2: influence of experimental factors. Cem Concr Compos. 2017;83:279–289.
  • Hamdany AH, Ding Y, Qian S. Mechanical and antibacterial behavior of photocatalytic lightweight engineered cementitious composites. J Mater Civ Eng. 2021;33(10):04021262.
  • Luévano-Hipólito E, Torres-Martínez LM, Vega-Mendoza MS, et al. Photocatalytic performance of alkali-activated materials functionalized with β-Bi2O3/Bi2O2CO3 heterostructures for environmental remediation. Constr Build Mater. 2022;320:126205.
  • Rastogi M, Vaish R. Visible light induced water detoxification through Portland cement composites reinforced with photocatalytic filler: a leap away from TiO2. Constr Build Mater. 2016;120:364–372.
  • Sikora P, Cendrowski K, Markowska-Szczupak A, et al. The effects of silica/titania nanocomposite on the mechanical and bactericidal properties of cement mortars. Constr Build Mater. 2017;150:738–746.
  • Yang L, Wang F, Shu C, et al. TiO2/porous cementitious composites: influences of porosities and TiO2 loading levels on photocatalytic degradation of gaseous benzene. Constr Build Mater. 2017;150:774–780.
  • Hoffmann MR, Martin ST, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev. 1995;95(1):69–96.
  • Kamat PV. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev. 1993;93(1):267–300.
  • Linsebigler AL, Lu G, Yates JT. Jr. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev. 1995;95(3):735–758.
  • Chen C, Cai W, Long M, et al. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano. 2010;4(11):6425–6432.
  • Chen C, Long M, Zeng H, et al. Preparation, characterization and visible-light activity of carbon modified TiO2 with two kinds of carbonaceous species. J Mol Catal Chem. 2009;314(1–2):35–41.
  • Cruz-Ortiz BR, Hamilton JWJ, Pablos C, et al. Mechanism of photocatalytic disinfection using titania-graphene composites under UV and visible irradiation. Chem Eng J. 2017;316:179–186.
  • Du A, Ng YH, Bell NJ, et al. Hybrid graphene/titania nanocomposite: interface charge transfer, hole doping, and sensitization for visible light response. J Phys Chem Lett. 2011;2(8):894–899.
  • Lettmann C, Hildenbrand K, Kisch H, et al. Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl Catal B Environ. 2001;32(4):215–227.
  • Morales-Torres S, Pastrana-Martínez LM, Figueiredo JL, et al. Design of graphene-based TiO2 photocatalysts–a review. Environ Sci Pollut Res. 2012;19(9):3676–3687.
  • Nguyen-Phan T-D, Pham VH, Shin EW, et al. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem Eng J. 2011;170(1):226–232.
  • Zhang H, Lv X, Li Y, et al. P25-graphene composite as a high performance photocatalyst. ACS Nano. 2010a;4(1):380–386.
  • Lu K-Q, Li Y-H, Tang Z-R, et al. Roles of graphene oxide in heterogeneous photocatalysis. ACS Mater Au. 2021;1(1):37–54.
  • Upadhyay RK, Soin N, Roy SS. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review. RSC Advances,. 2014;4(8):3823–3851.
  • Zhang N, Yang M-Q, Liu S, et al. Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem Rev. 2015;115(18):10307–10377.
  • Yeh T-F, Syu J-M, Cheng C, et al. Graphite oxide as a photocatalyst for hydrogen production from water. Adv Funct Mater. 2010;20(14):2255–2262.
  • Yeh T-F, Teng C-Y, Chen S-J, et al. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv Mater. 2014;26(20):3297–3303.
  • Jo W-K, Kang H-J. Titanium dioxide–graphene oxide composites with different ratios supported by pyrex tube for photocatalysis of toxic aromatic vapors. Powder Technol. 2013;250:115–121.
  • Liu J, Zhu W, Yu S, et al. Three dimensional carbogenic dots/TiO2 nanoheterojunctions with enhanced visible light-driven photocatalytic activity. Carbon. 2014;79:369–379.
  • Lin Y, Liao Y, Yu Z, et al. Co-pyrolysis kinetics of sewage sludge and oil shale thermal decomposition using TGA–FTIR analysis. Energy Convers Manage. 2016;118:345–352.
  • Yang Y, Brammer JG, Samanya J, et al. Investigation into the performance and emissions of a stationary diesel engine fuelled by sewage sludge intermediate pyrolysis oil and biodiesel blends. Energy. 2013;62:269–276.
  • Yao Z, Ma X, Wu Z, et al. TGA–FTIR analysis of co-pyrolysis characteristics of hydrochar and paper sludge. J Anal Appl Pyrolysis. 2017;123:40–48.
  • Si Y, Samulski ET. Synthesis of water soluble graphene. Nano Lett. 2008;8(6):1679–1682.
  • Zhang Y, Pan C. TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J Mater Sci. 2011;46(8):2622–2626.
  • Nethravathi C, Rajamathi M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon. 2008;46(14):1994–1998.
  • Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed. 2003;42(40):4908–4911.
  • Zhang J, Pan C, Fang P, et al. Mo + C codoped TiO2 using thermal oxidation for enhancing photocatalytic activity. ACS Appl Mater Interfaces. 2010b;2(4):1173–1176.
  • Jimenez-Relinque E, Llorente I, Castellote M. TiO2 cement-based materials: understanding optical properties and electronic band structure of complex matrices. Catal Today. 2017;287:203–209.
  • Karapati S, Giannakopoulou T, Todorova N, et al. TiO2 functionalization for efficient NOx removal in photoactive cement. Appl Surf Sci. 2014;319:29–36.
  • Boubaker K. A physical explanation to the controversial urbach tailing universality. Eur Phys J Plus. 2011;126(1):10.
  • Choudhury B, Choudhury A. Oxygen defect dependent variation of band gap, urbach energy and luminescence property of anatase, anatase–rutile mixed phase and of rutile phases of TiO2 nanoparticles. Physica E. 2014;56:364–371.
  • Entradas T, Cabrita JF, Dalui S, et al. Synthesis of Sub-5 nm Co-doped SnO2 nanoparticles and their structural, microstructural, optical and photocatalytic properties. Mater Chem Phys. 2014;147(3):563–571.
  • Ikhmayies SJ, Ahmad-Bitar RN. A study of the optical bandgap energy and urbach tail of spray-deposited CdS: in thin films. J Mater Res Technol. 2013;2(3):221–227.
  • Rivera VAG, Ledemi Y, Pereira-DA-Silva MA, et al. Plasmon-photon conversion to near-infrared emission from Yb3+: (Au/Ag-nanoparticles) in tungsten-tellurite glasses. Sci Rep. 2016;6:18464.
  • Khan MM, Ansari SA, Pradhan D, et al. Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A. 2014;2(3):637–644.
  • Wang S, Zhao L, Bai L, et al. Enhancing photocatalytic activity of disorder-engineered C/TiO2 and TiO2 nanoparticles. J Mater Chem A. 2014;2(20):7439–7445.
  • Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11(6):371–384.
  • Moritz M, Geszke-Moritz M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem Eng J. 2013;228:596–613.
  • Klaewkla R, Arend M, Hölderich W. 2011. A review of mass transfer controlling the reaction rate in heterogeneous catalytic systems.
  • Gogniat G, Dukan S. TiO2 photocatalysis causes DNA damage via fenton reaction-generated hydroxyl radicals during the recovery period. Appl Environ Microbiol. 2007;73(23):7740–7743.
  • Harrison JJ, Tremaroli V, Stan MA, et al. Chromosomal antioxidant genes have metal ion-specific roles as determinants of bacterial metal tolerance. Environ Microbiol. 2009;11(10):2491–2509.
  • Carre G, Estner M, Gies J-P, et al. TiO2 photocatalysis damages lipids and proteins in Escherichia coli. Appl Environ Microbiol. 2014;80(8):2573–2581.
  • Lushchak V. 2010. Adaptive response to oxidative stress: bacteria, fungi, plants and animals.
  • Daly MJ, Gaidamakova EK, Matrosova VY, et al. Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol. 2007;5(4):e92.
  • Kiwi J, Nadtochenko V. Evidence for the mechanism of photocatalytic degradation of the bacterial wall membrane at the TiO2 interface by ATR-FTIR and laser kinetic spectroscopy. Langmuir. 2005;21(10):4631–4641.
  • Endo M, Wei Z, Wang K, et al. Noble metal-modified titania with visible-light activity for the decomposition of microorganisms. Beilstein J Nanotechnol. 2018;9:829–841.
  • Amory DE, Rouxhet PG. Surface properties of Saccharomyces cerevisiae and Saccharomyces carlbergensis: chemical composition, electrostatic charge and hydrophobicity. Biochim Biophys Acta (BBA) – Biomembr. 1988;938(1):61–70.
  • Lewin R. Microbial adhesion is a sticky problem. Science. 1984;224(4647):375–377.
  • Ding Y, Peng N, Du Y, et al. Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr(VI) immobilization. Appl Environ Microbiol. 2014;80(4):1498–1506.
  • Riveiro A, Maçon ALB, DEL Val J, et al. Laser surface texturing of polymers for biomedical applications. Front Phys. 2018;6:16.
  • Fujishima A, Zhang XT, Tryk DA. TiO2 photocatalysis and related surface phenomena. Surface Scie Rep. 2008;63(12):515–582.
  • Schakenraad JM, Busscher HJ, Wildevuur CRH, et al. The influence of substratum surface free energy on growth and spreading of human fibroblasts in the presence and absence of serum proteins. J Biomed Mater Res. 1986;20(6):773–784.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.