224
Views
0
CrossRef citations to date
0
Altmetric
Technical Reports

Multiscale numerical-analytical modelling of oxygen diffusivity in partially saturated concrete: Role of interfacial transition zone

, , , , &

References

  • Dutzer V, Dridi W, Poyet S, et al. The link between gas diffusion and carbonation in hardened cement pastes. Cem Concr Res. 2019;123:105795.
  • Loser R, Lothenbach B, Leemann A, et al. Chloride resistance of concrete and its binding capacity–comparison between experimental results and thermodynamic modeling. Cem Concr Compos. 2010;32(1):34–42.
  • Ehlen MA, Thomas MD, Bentz EC. Life-365 service life prediction modelTM version 2.0. Concr Int. 2009;31:41–46.
  • Song H-W, Kim H-J, Saraswathy V, et al. A micro-mechanics based corrosion model for predicting the service life of reinforced concrete structures. Int J Electrochem Sci. 2007;2:341–354.
  • Liu C, Qian C, Qian R, et al. Numerical prediction of effective diffusivity in hardened cement paste between aggregates using different shapes of cement powder. Constr Build Mater. 2019;223:806–816.
  • Jiang Z, Huang Q, Xi Y, et al. Experimental study of diffusivity of the interfacial transition zone between cement paste and aggregate. J. Mater. Civ. Eng. 2016;28(10):04016109.
  • Scrivener KL, Crumbie AK, Laugesen P. The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface Sci. 2004;12(4):411–421.
  • Li W, Luo Z, Gan Y, et al. Nanoscratch on mechanical properties of interfacial transition zones (ITZs) in fly ash-based geopolymer composites. Compos Sci Technol. 2021;214:109001.
  • Fu C, Ling Y, Wang K. An innovation study on chloride and oxygen diffusions in simulated interfacial transition zone of cementitious material. Cem Concr Compos. 2020;110:103585.
  • Shane JD, Mason TO, Jennings HM, et al. Effect of the interfacial transition zone on the conductivity of Portland cement mortars. J Amer Ceram Soc. 2004;83(5):1137–1144.
  • Li K, Stroeven P, Stroeven M, et al. A numerical investigation into the influence of the interfacial transition zone on the permeability of partially saturated cement paste between aggregate surfaces. Cem Concr Res. 2017;102:99–108.
  • Jiang J, Sun G, Wang C. Numerical calculation on the porosity distribution and diffusion coefficient of interfacial transition zone in cement-based composite materials. Constr Build Mater. 2013;39:134–138.
  • Wu K, Xu L, De Schutter G, et al. Influence of the interfacial transition zone and interconnection on chloride migration of Portland cement mortar. ACT. 2015;13(3):169–177.
  • Wu L, Ju X, Liu M, et al. Influences of multiple factors on the chloride diffusivity of the interfacial transition zone in concrete composites. Composites Part B: Engin. 2020;199:108236.
  • Yang C-C, Weng S-H. A three-phase model for predicting the effective chloride migration coefficient of ITZ in cement-based materials. Mag Concr Res. 2013;65(3):193–201.
  • Kim J-K, Lee C-S. Moisture diffusion of concrete considering self-desiccation at early ages. Cem Concr Res. 1999;29(12):1921–1927.
  • Zhou C, Ren F, Zeng Q, et al. Pore-size resolved water vapor adsorption kinetics of white cement mortars as viewed from proton NMR relaxation. Cem Concr Res. 2018;105:31–43.
  • Zhang Y, Zhang M. Transport properties in unsaturated cement-based materials–a review. Constr Build Mater. 2014;72:367–379.
  • Li K, Stroeven M, Stroeven P, et al. Investigation of liquid water and gas permeability of partially saturated cement paste by DEM approach. Cem Concr Res. 2016;83:104–113.
  • Olsson N, Baroghel-Bouny V, Nilsson L-O, et al. Non-saturated ion diffusion in concrete–a new approach to evaluate conductivity measurements. Cem Concr Compos. 2013;40:40–47.
  • Zhang M, Xu K, He Y, et al. Pore-scale modelling of 3D moisture distribution and critical saturation in cementitious materials. Constr Build Mater. 2014;64:222–230.
  • Carrara P, Lorenzis LD. Consistent identification of the interfacial transition zone in simulated cement microstructures. Cem Concr Compos. 2017;80:224–234.
  • Liu C, Zhang M. Multiscale modelling of ionic diffusivity in unsaturated concrete accounting for its hierarchical microstructure. Cem Concr Res. 2022;156:106766.
  • Bentz DP. Modeling the influence of limestone filler on cement hydration using CEMHYD3D. Cem Concr Compos. 2006;28(2):124–129.
  • Bentz DP. Three-dimensional computer simulation of Portland cement hydration and microstructure development. J Amer Ceram Soc. 1997;80(1):3–21.
  • Gao Y, De Schutter G, Ye G, et al. The ITZ microstructure, thickness and porosity in blended cementitious composite: effects of curing age, water to binder ratio and aggregate content. Composites Part B: Engin. 2014;60:1–13.
  • Lyu K, She W, Chang H, et al. Effect of fine aggregate size on the overlapping of interfacial transition zone (ITZ) in mortars. Constr Build Mater. 2020;248:118559.
  • Bullard JW, Garboczi EJ. A model investigation of the influence of particle shape on Portland cement hydration. Cem Concr Res. 2006;36(6):1007–1015.
  • Xu W, Chen H. Microstructural characterization of fresh cement paste via random packing of ellipsoidal cement particles. Mater Charact. 2012;66:16–23.
  • Liu C, Baudet B, Zhang M. Lattice Boltzmann modelling of ionic diffusivity in non-saturated limestone blended cement paste. Constr Build Mater. 2022;316:126060.
  • Hou D, Jia Y, Yu J, et al. Transport properties of sulfate and chloride ions confined between calcium silicate hydrate surfaces: a molecular dynamics study. J Phys Chem C. 2018;122(49):28021–28032.
  • McDonald PJ, Rodin V, Valori A. Characterisation of intra-and inter-C-S-H gel pore water in white cement based on an analysis of NMR signal amplitudes as a function of water content. Cem Concr Res. 2010;40(12):1656–1663.
  • Powers TC. Structure and physical properties of hardened Portland cement paste. J Am Ceramic Soc. 1958;41(1):1–6.
  • Zhang M, Ye G, van Breugel K. Modeling of ionic diffusivity in non-saturated cement-based materials using lattice Boltzmann method. Cem Concr Res. 2012;42(11):1524–1533.
  • Lura P, Jensen OM, Van Breugel K. Autogenous shrinkage in high-performance cement paste: an evaluation of basic mechanisms. Cem Concr Res. 2003;33(2):223–232.
  • Grasley ZC, Lange DA. Thermal dilation and internal relative humidity of hardened cement paste. Mater Struct. 2007;40(3):311–317.
  • Liu C, Liu Z, Zhang Y. A multi-scale framework for modelling effective gas diffusivity in dry cement paste: combined effects of surface, Knudsen and molecular diffusion. Cem Concr Res. 2020;131:106035.
  • Liu C, Xu Z, Chen G, et al. Microscopic modelling of gas diffusivity in unsaturated cementitious materials considering multiple diffusion regimes. Int J Heat Mass Transf. 2022;192:122916.
  • Sercombe J, Vidal R, Gallé C, et al. Experimental study of gas diffusion in cement paste. Cem Concr Res. 2007;37(4):579–588.
  • He X, Zou Q, Luo L-S, et al. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. J Stat Phys. 1997;87(1-2):115–136.
  • Liu C, Wang F, Zhang M. Modelling of 3D microstructure and effective diffusivity of fly ash blended cement paste. Cem Concr Compos. 2020;110) :103586.
  • Caré S, Hervé E. Application of an-phase model to the diffusion coefficient of chloride in mortar. Transp Porous Media. 2004;56(2):119–135.
  • Milton G. Concerning bounds on the transport and mechanical properties of multicomponent composite materials. Appl. Phys. A. 1981;26(2):125–130.
  • Lu B, Torquato S. Nearest-surface distribution functions for polydispersed particle systems. Phys Rev A. 1992;45(8):5530–5544.
  • Sun G, Sun W, Zhang Y, et al. Multi-scale modeling of the effective chloride ion diffusion coefficient in cement-based composite materials. J Wuhan Univ Technol-Mat Sci Edit. 2012;27(2):364–373.
  • Garboczi EJ, Bentz DP. Multiscale analytical/numerical theory of the diffusivity of concrete. Adv Cem Based Mater. 1998;8(2):77–88.
  • Zhang Z, Song X, Liu Y, et al. Three-dimensional mesoscale modelling of concrete composites by using random walking algorithm. Compos Sci Technol. 2017;149:235–245.
  • Villani C, Loser R, West MJ, et al. An inter lab comparison of gas transport testing procedures: oxygen permeability and oxygen diffusivity. Cem Concr Compos. 2014;53:357–366.
  • Boumaaza M. Experimental investigation of gas diffusivity and CO2-binding capacity of cementitious materials, Technische Universität München; 2020.
  • Wu Z, Wong H, Buenfeld N. Transport properties of concrete after drying-wetting regimes to elucidate the effects of moisture content, hysteresis and microcracking. Cem Concr Res. 2017;98:136–154.
  • Zheng J, Zhou X. Prediction of the chloride diffusion coefficient of concrete. Mater Struct. 2007;40(7):693–701.
  • Patel RA, Perko J, Jacques D, et al. Effective diffusivity of cement pastes from virtual microstructures: role of gel porosity and capillary pore percolation. Constr Build Mater. 2018;165:833–845.
  • Zhang M, Ye G, van Breugel K. Multiscale lattice Boltzmann-finite element modelling of chloride diffusivity in cementitious materials. Part II: simulation results and validation. Mech Res Commun. 2014;58:64–72.
  • Wong H, Zobel M, Buenfeld N, et al. Influence of the interfacial transition zone and microcracking on the diffusivity, permeability and sorptivity of cement-based materials after drying. Mag Concr Res. 2009;61(8):571–589.
  • Liu C, Qian R, Wang Y, et al. Microscopic modelling of permeability in cementitious materials: effects of mechanical damage and moisture conditions. ACT. 2021;19(11):1120–1132.
  • Wu Z, Wong H, Buenfeld N. Influence of drying-induced microcracking and related size effects on mass transport properties of concrete. Cem Concr Res. 2015;68:35–48.
  • Beltzung F, Wittmann FH. Role of disjoining pressure in cement based materials. Cem Concr Res. 2005;35(12):2364–2370.
  • Ren F, Zhou C, Zeng Q, et al. The dependence of capillary sorptivity and gas permeability on initial water content for unsaturated cement mortars. Cem Concr Compos. 2019;104:103356.
  • Baroghel-Bouny V. Water vapour sorption experiments on hardened cementitious materials: part I: essential tool for analysis of hygral behaviour and its relation to pore structure. Cem Concr Res. 2007;37(3):414–437.
  • Jennings HM, Kumar A, Sant G. Quantitative discrimination of the nano-pore-structure of cement paste during drying: new insights from water sorption isotherms. Cem Concr Res. 2015;76:27–36.
  • Zeng Q, Zhang D, Li K. Kinetics and equilibrium isotherms of water vapor adsorption/desorption in cement-based porous materials. Transp Porous Med. 2015;109(2):469–493.
  • Ožbolt J, Oršanić F, Balabanić G. Modeling influence of hysteretic moisture behavior on distribution of chlorides in concrete. Cem Concr Compos. 2016;67:73–84.
  • Wu K, Han H, Li H, et al. Experimental study on concurrent factors influencing the ITZ effect on mass transport in concrete. Cem Concr Compos. 2021;123:104215.
  • Sun G, Sun W, Zhang Y, et al. Numerical calculation and influencing factors of the volume fraction of interfacial transition zone in concrete. Sci China Technol Sci. 2012;55(6):1515–1522.
  • Zheng JJ, Guo ZQ, Pan XD, et al. ITZ volume fraction in concrete with spheroidal aggregate particles and application: part I. Numerical algorithm. Mag Concr Res. 2011;63(7):473–482.
  • Zouaoui R, Miled K, Limam O, et al. Analytical prediction of aggregates’ effects on the ITZ volume fraction and Young’s modulus of concrete. Int J Numer Anal Meth Geomech. 2017;41(7):976–993.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.