349
Views
3
CrossRef citations to date
0
Altmetric
Technical Reports

Improvement in mechanical properties and microstructure of electric arc furnace slag bricks by microbial accelerated carbonation

, &

References

  • Peplow M. Bioconcrete presages new wave in environmentally friendly construction. Nat Biotechnol. 2020;38(7):776–778.
  • Branca TA, Colla V, Algermissen D, et al. Reuse and recycling of by-products in the steel sector: recent achievements paving the way to circular economy and industrial symbiosis in Europe. Metals (Basel). 2020;10(3):345.
  • Muhmood L, Vitta S, Venkateswaran D. Cementitious and pozzolanic behavior of electric arc furnace steel slags. Cem Concr Res. 2009;39(2):102–109.
  • Arribas I, Santamaría A, Ruiz E, et al. Electric arc furnace slag and its use in hydraulic concrete. Constr Build Mater. 2015;90:68–79.
  • Skaf M, Manso JM, Aragón Á, et al. Resources, conservation and recycling EAF slag in asphalt mixes: a brief review of its possible re-use. Resour Conserv Recycl. 2017;120:176–185.
  • Saha AK, Khan MNN, Sarker PK. Resources, conservation & recycling value added utilization of by-product electric furnace ferronickel slag as construction materials: a review. Resour Conserv Recycl. 2018;134:10–24.
  • Penteado CSG, Evangelista BL, Ferreira GdS, et al. Use of electric arc furnace slag for producing concrete paving blocks. Ambient. Constr. 2019;19(2):21–32.
  • Reddy KR, Gopakumar A, Chetri JK. Critical review of applications of iron and steel slags for carbon sequestration and environmental remediation. Rev Environ Sci Biotechnol. 2019;18(1):127–152.
  • Achal V, Mukherjee A. A review of microbial precipitation for sustainable construction. Constr Build Mater. 2015;93:1224–1235.
  • Li N, Farzadnia N, Shi C. Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation. Cem Concr Res. 2017;100:214–226.
  • Wang J, Xu H, Xu D, et al. Accelerated carbonation of hardened cement pastes: influence of porosity. Constr Build Mater. 2019;225:159–169.
  • Mo L, Zhang F, Deng M, et al. Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates. Cem Concr Compos. 2017;83:138–145.
  • Shi C, Qian J. High performance cementing materials from industrial slags – a review. Resour Conserv Recycl. 2000;29(3):195–207.
  • Shi C. Steel Slag-Its Production, Processing, Characteristics, and Cementitious Properties. Cheminform. 2005;36(3):230–236.
  • Lekakh SN, Rawlins CH, Robertson DGC, et al. Kinetics of aqueous leaching and carbonization of steelmaking slag. Metall Mater Trans B. 2008;39(1):125–134.
  • Wang X, Lu X, Turvey CC, et al. Evaluation of the carbon sequestration potential of steel slag in China based on theoretical and experimental labile Ca. Resour Conserv Recycl. 2022;186:106590.
  • Sheen YN, Wang HY, Sun TH. A study of engineering properties of cement mortar with stainless steel oxidizing slag and reducing slag resource materials. Constr Build Mater. 2013;40:239–245.
  • Huaiwei Z, Xin H. An overview for the utilization of wastes from stainless steel industries. Resour Conserv Recycl. 2011;55(8):745–754.
  • Gurtubay L, Gallastegui G, Elias A, et al. Accelerated ageing of an EAF black slag by carbonation and percolation for long-term behaviour assessment. J Environ Manage. 2014;140:45–50.
  • Srivastava S, Snellings R, Nielsen P, et al. Accelerated carbonation of ferrous and non-ferrous slags to produce clinker-free carbonate-bonded blocks: synergetic reduction in environmental leaching. Constr Build Mater. 2022; 348:128630.
  • van Zomeren A, van der Laan SR, Kobesen HBA, et al. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO 2 pressure. Waste Manag. 2011;31(11):2236–2244.
  • Huijgen WJJ, Witkamp GJ, Comans RNJ. Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol. 2005;39(24):9676–9682.
  • Bonenfant D, Kharoune L, Sauvé S, et al. CO2 sequestration potential of steel slags at ambient pressure and temperature. Ind. Eng. Chem. Res. 2008;47(20):7610–7616.
  • Li L, Zhong X, Ling TC. Effects of accelerated carbonation and high temperatures exposure on the properties of EAFS and BOFS pressed blocks. J Build Eng. 2022;45:103504.
  • Chen Z, Cang Z, Yang F, et al. Carbonation of steelmaking slag presents an opportunity for carbon neutral: a review. J CO2 Util. 2021;54:101738. Elsevier Ltd
  • Baciocchi R, Costa G, Polettini A, et al. Effects of thin-film accelerated carbonation on steel slag leaching. J Hazard Mater. 2015;286:369–378.
  • Shi C, Liu M, He P, et al. Factors affecting kinetics of co2 curing of concrete. J Sustain Cem Based Mater. 2012;1(1-2):24–33.
  • Polettini A, Pomi R, Stramazzo A. CO2 sequestration through aqueous accelerated carbonation of BOF slag: a factorial study of parameters effects. J Environ Manage. 2016;167:185–195.
  • de Belie N, Wang J. Bacteria-based repair and self-healing of concrete. J Sustain Cem Based Mater. 2016;5(1-2):35–56.
  • Dinarvand P, Rashno A. Review of the potential application of bacteria in self-healing and the improving properties of concrete/mortar. J Sustain Cem Based Mater. 2022;11(4):250–271.
  • Mutitu KD, Munyao MO, Wachira MJ, et al. Effects of biocementation on some properties of cement-based materials incorporating bacillus species bacteria–a review. J Sustain Cem Based Mater. 2019;8(5):309–325.
  • De Muynck W, De Belie N, Verstraete W. Microbial carbonate precipitation in construction materials: a review. Ecol Eng. 2010;36(2):118–136.
  • Achal V, Pan X, Fu Q, et al. Biomineralization based remediation of as(III) contaminated soil by sporosarcina ginsengisoli. J Hazard Mater. 2012;201-202:178–184.
  • Xue B, Qian C. Mitigation of efflorescence of wallboard by means of bio-mineralization. Front Microbiol. 2015;6:1–7.
  • Saxena S, Tembhurkar AR. Developing biotechnological technique for reuse of wastewater and steel slag in bio-concrete. J Clean Prod. 2019;229:193–202.
  • Jin P, Zhang S, Liu Y, et al. Application of Bacillus mucilaginosus in the carbonation of steel slag. Appl Microbiol Biotechnol. 2021;105(23):8663–8674.
  • Zhan Q, Qian C. Microbial-induced remediation of Zn2+ pollution based on the capture and utilization of carbon dioxide. Electron J Biotechnol. 2016;19:29–32.
  • Shi C, Hu S. Cementitious properties of ladle slag fines under autoclave curing conditions. Cem Concr Res. 2003;33(11):1851–1856.
  • Shi C. Characteristics and cementitious properties of ladle slag fines from steel production. Cem Concr Res. 2002;32(3):459–462.
  • Rakhimova NR, Rakhimov RZ. A review on alkali-activated slag cements incorporated with supplementary materials. J Sustain Cem Based Mater. 2014;3(1):61–74.
  • Zheng T, Qian C. Influencing factors and formation mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase. Process Biochem. 2020;91:271–281.
  • Li W, Liu L, Chen W, et al. Calcium carbonate precipitation and crystal morphology induced by microbial carbonic anhydrase and other biological factors. Process Biochem. 2010;45(6):1017–1021.
  • Kim J, Azimi G. The CO2 sequestration by supercritical carbonation of electric arc furnace slag. J CO2 Util. 2021;52:101667.
  • Dung NT, Hay R, Lesimple A, et al. Influence of CO2 concentration on the performance of MgO cement mixes. Cem Concr Compos. 2021;115:103826.
  • Tu Z, Guo MZ, Poon CS, et al. Effects of limestone powder on CaCO3 precipitation in CO2 cured cement pastes. Cem Concr Compos. 2016;72:9–16.
  • Shen H, Forssberg E, Nordström U. Physicochemical and mineralogical properties of stainless steel slags oriented to metal recovery. Resour Conserv Recycl. 2004;40(3):245–271.
  • Baalamurugan J, Kumar VG, Chandrasekaran S, et al. Recycling of steel slag aggregates for the development of high density concrete: alternative & environment-friendly radiation shielding composite. Compos B Eng. 2021;216:103826.
  • Ban J, Sun K, Yao J, et al. Advances in the use of recycled inorganic silicon oxide wastes as a resource for non-ferrous metal mine site remediation. Environ Res. 2022;213:113533.
  • Wang Q, Yang J, Yan P. Cementitious properties of super-fine steel slag. Powder Technol. 2013;245:35–39.
  • Li L, Jiang Y, Pan SY, et al. Comparative life cycle assessment to maximize CO2 sequestration of steel slag products. Constr Build Mater. 2021;298:123876.
  • Shi C, Wu Y. Studies on some factors affecting CO2 curing of lightweight concrete products. Resour Conserv Recycl. 2008;52(8–9):1087–1092.
  • Huijgen WJJ, Comans RNJ. Carbonation of steel slag for CO2 sequestration: leaching of products and reaction mechanisms. Environ Sci Technol. 2006;40(8):2790–2796.
  • Kim IG, Jo BH, Kang DG, et al. Biomineralization-based conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase. Chemosphere. 2012;87(10):1091–1096.
  • Lü X, He Q, Wang Z, et al. Calcium carbonate precipitation mediated by bacterial carbonic anhydrase in a karst cave: crystal morphology and stable isotopic fractionation. Chem Geol. 2019;530:119331.
  • Jo BH, Seo JH, Yang YJ, et al. Bioinspired silica nanocomposite with autoencapsulated carbonic anhydrase as a robust biocatalyst for CO2 sequestration. ACS Catal. 2014;4(12):4332–4340.
  • Lindskog S, Coleman JE. The catalytic mechanism of carbonic anhydrase. Proc Natl Acad Sci U S A. 1973;70(9):2505–2508.
  • Su Y, Feng J, Jin P, et al. Influence of bacterial self-healing agent on early age performance of cement-based materials. Constr Build Mater. 2019;218:224–234.
  • Wang K, Qian C, Wang R. The properties and mechanism of microbial mineralized steel slag bricks. Constr Build Mater. 2016;113:815–823.
  • Ruan S, Unluer C. Influence of mix design on the carbonation, mechanical properties and microstructure of reactive MgO cement-based concrete. Cem Concr Compos. 2017;80:104–114.
  • Ruan S, Unluer C. Effect of air entrainment on the performance of reactive MgO and PC mixes. Constr Build Mater. 2017;142:221–232.
  • Ruan S, Liu J, Yang EH, et al. Performance and microstructure of calcined dolomite and reactive magnesia-based concrete samples. J. Mater. Civ. Eng. 2017;29(12):1–10.
  • Sorlini S, Sanzeni A, Rondi L. Reuse of steel slag in bituminous paving mixtures. J Hazard Mater. 2012;209–210:84–91.
  • Teo PT, Anasyida AS, Kho CM, et al. Recycling of malaysia’s EAF steel slag waste as novel fluxing agent in green ceramic tile production: sintering mechanism and leaching assessment. J Clean Prod. 2019;241:118144.
  • Ochola CE, Moo-Young HK. Establishing and elucidating reduction as the removal mechanism of Cr(VI) by reclaimed limestone residual RLR (modified steel slag). Environ Sci Technol. 2004;38(22):6161–6165.
  • Gu Y, Zhang Y, Chang J, et al. Alteration mechanisms of carbonated steel slag product under hydrochloric acid attack. J Sustain Cem Based Mater. 2021;10(1):46–64.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.