164
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Strength, shrinkage, heat evolution, and microstructure of high performance concrete containing high proportions of ground bottom ash blended with fly ash

, , , &

References

  • Garside M. Cement production worldwide from 1995 to 2021, 2022. (accessed 2022 Jun 10). Available from https://www.statista.com/statistics/1087115/global-cement-production-volume/.
  • Andrew RM. Global CO2 emissions from cement production. Earth Syst Sci Data. 2019;11(4):1675–1710.
  • Ali MB, Saidur R, Hossain MS. A review on emission analysis in cement industries. Renew Sustain Energy Rev. 2011;15(5):2252–2261.
  • Deja J, Uliasz-Bochenczyk A, Mokrzycki E. CO2 emissions from polish cement industry. Int J Greenhouse Gas Control. 2010;4(4):583–588.
  • Bosoaga A, Masek O, Oakey JE. CO2 capture technologies for cement industry. Energy Procedia. 2009;1(1):133–140.
  • Davis RE, Carlson RW, Kelly JW, et al. Properties of cements and concretes containing fly ash. J Am Concrete Ins, Proc. 1937;33:577–612.
  • Anon. An investigation of the pozzolanic nature of coal ashes. Eng News. 1914;71:1334–1335.
  • Kererat C, Kroehong W, Thaipum S, et al. Bottom ash stabilized with cement and Para rubber latex for road base applications. Case Stud Constr Mater. 2022;17:e01259.
  • Prasartseree T, Wasanapiarnpong T, Mongkolkachit C, et al. Influence of lignite bottom ash on pyroplastic deformation of stoneware ceramic tiles. KEM. 2018;766:264–269.
  • EGAT. Sustainability Report 2015, Nonthaburi, 2015.
  • Ahmaruzzaman M. A review on the utilization of fly ash. Prog Energy Combust Sci. 2010;36(3):327–363.
  • Cheerarot R, Jaturapitakkul C. A study of disposed fly ash from landfill to replace Portland cement. Waste Manag. 2004;24(7):701–709.
  • Chindaprasirt P, Jaturapitakkul C. Cement, pozzolan and concrete. 6th ed. Bangkok: Thai Concrete Association; 2010. p. 302–312.
  • Langan BW, Joshi RC, Ward MA. Strength and durability of concretes containing 50% Portland cement replacement by fly ash and other materials. Can J Civ Eng. 1990;17(1):19–27.
  • Ghafoori N, Bucholc J. Investigation of lignite-based bottom ash for structural concrete. J Mater Civ Eng. 1996;8(3):128–137.
  • Andrade LB, Rocha JC, Cheriaf M. Influence of coal bottom ash as fine aggregate on fresh properties of concrete. Constr Build Mater. 2009;23(2):609–614.
  • Kim HK, Lee HK. Use of power plant bottom ash as fine and coarse aggregates in high-strength concrete. Constr Build Mater. 2011;25(2):1115–1122.
  • Mongkhonsang P. A study on corrosion of mortar containing bottom ash replacing sand PSU-UNS International Conference on Engineering and Environment – ICEE-2007; 2007. p. 168–172.
  • Singh M, Siddique R. Effect of coal bottom ash as partial replacement of sand on properties of concrete. Resour Conserv Recycl. 2013;72:20–32.
  • Thailand Concrete Association (TCA). Manual for the partial replacement of bottom ash as fine aggregate. Bangkok: TCA; 2018. p. 1–13.
  • Jaturapitakkul C, Cheerarot R. Development of bottom ash as pozzolanic material. J Mater Civ Eng. 2003;15(1):48–53.
  • Kim HK. Utilization of sieved and ground coal bottom ash powders as a coarse binder in high-strength mortar to improve workability. Constr Build Mater. 2015;91:57–64.
  • Oruji S, Brake NA, Nalluri L, et al. Strength activity and microstructure of blended ultra-fine coal bottom ash-cement mortar. Constr Build Mater. 2017;153:317–326.
  • Abdulmatin A, Tangchirapat W, Jaturapitakkul C. An investigation of bottom ash as a pozzolanic material. Constr Build Mater. 2018;186:155–162.
  • Cheriaf M, Rocha JC, Péra J. Pozzolanic properties of pulverized coal combustion bottom ash. Cem Concr Res. 1999;29(9):1387–1391.
  • ACI Committee 363R. Report on high-strength concrete. Farmington Hills: Michigan; 2010. p. 3.
  • ACI Committee 116R. Cement and concrete terminology. Farmington Hills: Michigan; 2000. p. 17.
  • Yazici H. The effect of silica fume and high-volume class C fly ash on mechanical properties, chloride penetration and freeze-thaw resistance of self-compacting concrete. Constr Build Mater. 2008;22:456–462.
  • Zhang MH, Malhotra VM. High-performance concrete incorporating rice husk ash as a supplementary cementing material. ACI Mater J. 1996;93:629–636.
  • Martins IM, Marques JC. Durability and strength properties of concrete containing coal bottom ash. In: International RILEM conference on material science, Aachen – MATSCI. RILEM Publications SARL; 2010. p. 275–283.
  • Naik TR, Kumar R, Ramme BW, et al. Development of high-strength, economical self-consolidating concrete. Constr Build Mater. 2012;30:463–469.
  • Sari M, Prat E, Labastire JF. High strength self-compacting concrete original solutions associating organic and inorganic admixtures. Cem Concr Res. 1999;29(6):813–818.
  • Xiao CZ, Li JH, Li YB, et al. Application and innovation of high-strength concrete in high-rise building structures. Struct Eng Int. 2022;32(2):236–242.
  • Okamura H, Ozawa K. Self-compacting high performance concrete. Struct Eng Int. 1996;6(4):269–270.
  • Pormmoon P, Abdulmatin A, Charoenwaiyachet C, et al. Effect of cut-size particles on the pozzolanic property of bottom ash. J Mater Res Technol. 2021;10:240–249.
  • TIS 15. Standard for ordinary Portland cement. Bangkok: Thai Industrial Standard; 2004. p. 1–22.
  • Chatveera PB. Influence of artificial pozzolanas on mechanical behavior of high strength concrete. KKU Eng J. 1994;21:59–71.
  • Khongpermgoson P, Abdulmatin A, Tangchirapat W, et al. Evaluation of compressive strength and resistance of chloride ingress of concrete using a novel binder from ground coal bottom ash and ground calcium carbide residue. Constr Build Mater. 2019;214:631–640.
  • Chindaprasirt P, Jaturapitakkul C, Chalee W, et al. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag. 2009;29(2):539–543.
  • Onprom P, Chaimoon K, Cheerarot R. Influence of bottom ash replacements as fine aggregate on the property of cellular concrete with various foam contents. Adv Mater Sci Eng. 2015;2015) :1–11.
  • ASTM C 618. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken (PA): ASTM International; 2015. p. 3–6.
  • Sathonsaowaphak A, Chindaprasirt P, Pimraksa K. Workability and strength of lignite bottom ash geopolymer mortar. J Hazard Mater. 2009;168(1):44–50.
  • EFNARC. Specification and guidelines for self-compacting concrete. Farnham: EFNARC; 2002.
  • ASTM C494. Standard specification for chemical admixtures for concrete. West Conshohocken (PA): ASTM International; 2015. p. 1–10.
  • Akhnoukh AK, Elia H. Developing high performance concrete for precast/prestressed concrete industry. Case Stud Constr Mater. 2019;11:e00290.
  • Yin J, Zhou S, Xie Y, et al. Investigation on compounding and application of C80-C100 high-performance concrete. Cem Concr Res. 2002;32(2):173–177.
  • Le HT, Ludwig HM. Effect of rice husk ash and other mineral admixtures on properties of self-compacting high performance concrete. Mater Des. 2016;89:156–166.
  • Mallisa H, Turuallo G. The maximum percentage of fly ash to replace part of original Portland cement (OPC) in producing high strength concrete AIP Conference Proceedings; 2017. p. 1903.
  • Chindasiriphan P, Meenyut B, Orasutthikul S, et al. Influences of high-volume coal bottom ash as cement and fine aggregate replacements on strength and heat evolution of eco-friendly high-strength concrete. J Building Eng. 2023;65:105791.
  • ASTM C39/C39M - 20. Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken (PA): ASTM International; 2020. p. 1–8.
  • ASTM C469/C469M - 14. Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression. West Conshohocken (PA): ASTM International; 2014. p. 1–5.
  • ASTM C490/C490M-17. Standard practice for use of apparatus for the determination of length change of hardened cement paste, mortar, and concrete. West Conshohocken (PA): ASTM International; 2017. p. 1–7.
  • Gilbert RI, Castel A, Khan I, et al. An experimental study of autogenous and drying shrinkage. In:d.A. Hordijk, M. Luković, editors. Proceedings of the 2017 fib symposium. Maastricht: Springer International Publishing AG; 2018. p. 33–41.
  • ASTM C1611/C1611M - 18. Standard test method for slump flow of self-consolidating concrete. West Conshohocken (PA): ASTM International; 2018. p. 1–6.
  • Ramachandran VS, Paroli RM, Beaudoin JJ, et al. Handbook of thermal analysis of construction materials. Ottawa (ON): Noyes Publications; 2002.
  • ASTM C1702-17. Standard test method for measurement of heat of hydration of hydraulic cementitious materials using isothermal conduction. West Conshohocken (PA): ASTM International; 2017. p. 1–8.
  • Zhang T, Yu Q, Wei J, et al. Study on optimization of hydration process of blended cement. J Therm Anal Calorim. 2012;107(2):489–498.
  • Ge Z, Wang K, Sandberg PJ, et al. Characterization and performance prediction of cement-based materials using a simple isothermal calorimeter. ACT. 2009;7(3):355–366.
  • Rerkpiboon A, Tangchirapat W, Jaturapitakkul C. Strength, chloride resistance, and expansion of concretes containing ground bagasse ash. Constr Build Mater. 2015;101:983–989.
  • Jaturapitakkul C, Kiattikomol K, Sata V, et al. Use of ground coarse fly ash as a replacement of condensed silica fume in producing high-strength concrete. Cem Concr Res. 2004;34(4):549–555.
  • Ferraris CF, Obla KH, Hill R. The influence of mineral admixtures on the rheology of cement paste and concrete. Cem Concr Res. 2001;31(2):245–255.
  • Promsawat P, Chatveera B, Sua-Iam G, et al. Properties of self-compacting concrete prepared with ternary Portland cement-high volume fly ash-calcium carbonate blends. Case Stud Constr Mater. 2020;13:e00426. 17.
  • Saha AK. Effect of class F fly ash on the durability properties of concrete. Sustainable Environ Res. 2018;28(1):25–31.
  • ACI Committee 212. Report on chemical admixtures. Farmington Hills (MI): American Concrete Institute; 2010. p. 25.
  • Canadian Standards Association (CSA). Canadian code CSA A23.3. Ontario: Mississauga; 2014. p. 31–32.
  • Beushausen H, Dittmer T. The influence of aggregate type on the strength and elastic modulus of high strength concrete. Constr Build Mater. 2015;74:132–139.
  • Mazloom M, Ramezanianpour AA, Brooks JJ. Effect of silica fume on mechanical properties of high-strength concrete. Cem Concr Compos. 2004;26(4):347–357.
  • Piasta W, Góra J, Budzyński W. Stress-strain relationships and modulus of elasticity of rocks and of ordinary and high performance concretes. Constr Build Mater. 2017;153:728–739.
  • Zhou FP, Lydon FD, Barr BIG. Effect of coarse aggregate on elastic modulus and compressive strength of high performance concrete. Cem Concr Res. 1995;25(1):177–186.
  • Aïtcin P-C. High-performance concrete. London: E & FN Spon; 1998. p. 423–453.
  • Domone PL. A review of the hardened mechanical properties of self-compacting concrete. Cem Concr Compos. 2007;29(1):1–12.
  • Wu L, Farzadnia N, Shi C, et al. Autogenous shrinkage of high performance concrete: a review. Constr Build Mater. 2017;149:62–75.
  • Kosmatka SH, Wilson ML. Design and control of concrete mixtures. 15th ed. Skokie (IL): Portland Cement Association; 2011. p. 300.
  • Vimonsatit V, Chindaprasirt P, Ruangsiriyakul S, et al. Influence of fly ash fineness on water requirement and shrinkage of blended cement mortars. KKU Eng J. 2015;42:311–316.
  • Termkhajornkit P, Nawa T, Nakai M, et al. Effect of fly ash on autogenous shrinkage. Cem Concr Res. 2005;35(3):473–482.
  • Zhang J, Zhao Y, Li H. Experimental investigation and prediction of compressive strength of ultra-high performance concrete containing supplementary cementitious materials. Adv Mater Sci Eng. 2017;2017:1–8.
  • Chindaprasirt P, Jaturapitakkul C, Sinsiri T. Effect of fly ash fineness on microstructure of blended cement paste. Constr Build Mater. 2007;21(7):1534–1541.
  • Lam L, Wong YL, Poon CS. Degree of hydration and gel/space ratio of high-volume fly ash/cement systems. Cem Concr Res. 2000;30(5):747–756.
  • Wongkeo W, Chaipanich A. Compressive strength, microstructure and thermal analysis of autoclaved and air cured structural lightweight concrete made with coal bottom ash and silica fume. Mater Sci Eng, A. 2010;527(16–17):3676–3684.
  • El-Jazairi B, Illston JM. A simultaneous semi-isothermal method of thermogravimetry and derivative thermogravimetry, and its application to cement pastes. Cem Concr Res. 1977;7(3):247–257.
  • Bai J, Chaipanich A, Kinuthia JM, et al. Compressive strength and hydration of wastepaper sludge ash-ground granulated blastfurnace slag blended pastes. Cem Concr Res. 2003;33(8):1189–1202.
  • Chindaprasirt P, Sinsiri T, Kroehong W, et al. Role of filler effect and pozzolanic reaction of biomass ashes on hydrated phase and pore size distribution of blended cement paste. J. Mater Civ Eng. 2014;26(9):1–10.
  • Massazza F. Lea’s chemistry of cement and concrete, fourth. London: Elsevier; 2006. p. 501.
  • Pane I, Hansen W. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cem Concr Res. 2005;35(6):1155–1164.
  • De Gutiérrez RM. Effect of supplementary cementing materials on the concrete corrosion control. Revista de Metalurgia (Madrid). 2003;7355:250–255.
  • Aïtcin P-C, Flatt RJ. Science and technology of concrete admixtures. Cambridge: Woodhead Publishing; 2016. p. 43.
  • Liu K, Sun D, Wang A, et al. Long-term performance of blended cement paste containing fly ash against sodium sulfate attack. J Mater Civ Eng. 2018;30(12):1–10.
  • Caldarone MA. High-strength concrete: a practical guide. 1st ed. Abingdon: Taylor & Francis; 2009. p. 21–63.
  • P, Norrarat, W, Tangchirapat C. Jaturapitakkul, evaluation of heat evolution of pastes containing high volume of ground river sand and ground granulated blast furnace slag. Medziagotyra. 2017;23:57–63.
  • Bougara A, Lynsdale C, Milestone NB. Reactivity and performance of blastfurnace slags of differing origin. Cem Concr Compos. 2010;32(4):319–324.
  • Moghaddam F, Sirivivatnanon V, Vessalas K. The effect of fly ash fineness on heat of hydration, microstructure, flow and compressive strength of blended cement pastes. Case Stud Constr Mater. 2019;10:e00218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.