425
Views
0
CrossRef citations to date
0
Altmetric
Reports

A deep learning-based potential developed for calcium silicate hydrates with both high accuracy and efficiency

, , , , , & show all

References

  • Monteiro PJM, Miller SA, Horvath A. Towards sustainable concrete. Nat Mater. 2017;16(7):698–699.
  • Scrivener KL, John VM, Gartner EM. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cem Concr Res. 2018;114:2–26.
  • Al-Ostaz A, Wu W, Cheng AHD, et al. A molecular dynamics and microporomechanics study on the mechanical properties of major constituents of hydrated cement. Compos B: Eng. 2010;41(7):543–549.
  • Miao CW. The influence of high performance concrete on low-carbon economy. AMR. 2011;374–377:1646–1656.
  • Shi Y, Long G, Ma C, et al. Design and preparation of ultra-high performance concrete with low environmental impact. J Cleaner Prod. 2019;214:633–643.
  • Mehta PK, Monteiro PJM. Concrete: microstructure, properties, and material. 4th ed. New York: McGraw-Hill Education; 2014.
  • Richardson IG. The calcium silicate hydrates. Cem Concr Res. 2008;38(2):137–158.
  • Pellenq RJ, Kushima A, Shahsavari R, et al. A realistic molecular model of cement hydrates. Proc Natl Acad Sci USA. 2009;106(38):16102–16107.
  • Puertas F, Palacios M, Manzano H, et al. A model for the C-A-S-H gel formed in alkali-activated slag cements. J Eur Ceram Soc. 2011;31(12):2043–2056.
  • Abdolhosseini Qomi MJ, Krakowiak KJ, Bauchy M, et al. Combinatorial molecular optimization of cement hydrates. Nat Commun. 2014;5(1):4960.
  • Kovačević G, Persson B, Nicoleau L, et al. Atomistic modeling of crystal structure of Ca 1.67 SiH x. Cem Concr Res. 2015;67:197–203.
  • Kumar A, Walder BJ, Kunhi Mohamed A, et al. The atomic-level structure of cementitious calcium silicate hydrate. J Phys Chem C. 2017;121(32):17188–17196.
  • Kunhi Mohamed A, Parker SC, Bowen P, et al. An atomistic building block description of C-S-H – towards a realistic C-S-H model. Cem Concr Res. 2018;107:221–235.
  • Kunhi Mohamed A, Moutzouri P, Berruyer P, et al. The atomic-level structure of cementitious calcium aluminate silicate hydrate. J Am Chem Soc. 2020;142(25):11060–11071.
  • Valavi M, Casar Z, Kunhi Mohamed A, et al. Molecular dynamic simulations of cementitious systems using a newly developed force field suite ERICA FF. Cem Concr Res. 2022;154:106712.
  • Cygan RT, Liang J-J, Kalinichev AG. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J Phys Chem B. 2004;108(4):1255–1266.
  • Kalinichev AG, Wang J, Kirkpatrick RJ. Molecular dynamics modeling of the structure, dynamics and energetics of mineral–water interfaces: application to cement materials. Cem Concr Res. 2007;37(3):337–347.
  • Cygan RT, Greathouse JA, Heinz H, et al. Molecular models and simulations of layered materials. J Mater Chem. 2009;19(17):2470.
  • Zhou Y, Hou D, Jiang J, et al. Chloride ions transport and adsorption in the nano-pores of silicate calcium hydrate: experimental and molecular dynamics studies. Constr Build Mater. 2016;126:991–1001.
  • Shahsavari R, Pellenq RJ, Ulm FJ. Empirical force fields for complex hydrated calcio-silicate layered materials. Phys Chem Chem Phys. 2011;13(3):1002–1011.
  • Qomi MJ, Bauchy M, Ulm FJ, et al. Anomalous composition-dependent dynamics of nanoconfined water in the interlayer of disordered calcium-silicates. J Chem Phys. 2014;140(5):054515.
  • Morshedifard A, Masoumi S, Abdolhosseini Qomi MJ. Nanoscale origins of creep in calcium silicate hydrates. Nat Commun. 2018;9(1):1785.
  • Manzano H, Pellenq RJ, Ulm FJ, et al. Hydration of calcium oxide surface predicted by reactive force field molecular dynamics. Langmuir. 2012;28(9):4187–4197.
  • Manzano H, Masoero E, Lopez-Arbeloa I, et al. 2013. Mechanical behaviour of ordered and disordered calcium silicate hydrates under shear strain studied by atomic scale simulations. Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete.
  • Bauchy M, Qomi MJ, Ulm FJ, et al. Order and disorder in calcium-silicate-hydrate. J Chem Phys. 2014;140(21):214503.
  • Hou D, Zhu Y, Lu Y, et al. Mechanical properties of calcium silicate hydrate (C–S–H) at nano-scale: a molecular dynamics study. Mater Chem Phys. 2014;146(3):503–511.
  • Mishra RK, Mohamed AK, Geissbühler D, et al. Cemff: a force field database for cementitious materials including validations, applications and opportunities. Cem Concr Res. 2017;102:68–89.
  • Schleder GR, Padilha ACM, Acosta CM, et al. From DFT to machine learning: recent approaches to materials science–a review. J. Phys. Mater. 2019;2(3):032001.
  • Shahsavari R, Buehler MJ, Pellenq RJM, et al. First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: case study of tobermorite and jennite. J Amer Ceram Soc. 2009;92(10):2323–2330.
  • Churakov SV, Labbez C, Pegado L, et al. Intrinsic acidity of surface sites in calcium silicate hydrates and its implication to their electrokinetic properties. J Phys Chem C. 2014;118(22):11752–11762.
  • Nguyen MT, Wang Z, Rod KA, et al. Atomic origins of the self-healing function in cement-polymer composites. ACS Appl Mater Interfaces. 2018;10(3):3011–3019.
  • Morawietz T, Singraber A, Dellago C, et al. How van der Waals interactions determine the unique properties of water. Proc Natl Acad Sci USA. 2016;113(30):8368–8373.
  • Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett. 2007;98(14):146401.
  • Kostiuchenko T, Körmann F, Neugebauer J, et al. Impact of lattice relaxations on phase transitions in a high-entropy alloy studied by machine-learning potentials. Npj Comput Mater. 2019;5(1):55.
  • Lanzoni D, Rovaris F, Montalenti F. Machine learning potential for interacting dislocations in the presence of free surfaces. Sci Rep. 2022;12(1):3760.
  • Zong H, Pilania G, Ding X, et al. Developing an interatomic potential for martensitic phase transformations in zirconium by machine learning. Npj Comput Mater. 2018;4(1): 48.
  • Li W, Ando Y. Dependence of a cooling rate on structural and vibrational properties of amorphous silicon: a neural network potential-based molecular dynamics study. J Chem Phys. 2019;151(11):114101.
  • Deringer VL, Bernstein N, Csanyi G, et al. Origins of structural and electronic transitions in disordered silicon. Nature. 2021;589(7840):59–64.
  • Kobayashi K, Nakamura H, Yamaguchi A, et al. Machine learning potentials for tobermorite minerals. Comput Mater Sci. 2021;188:110173.
  • Zhang L, Han J, Wang H, et al. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys Rev Lett. 2018;120(14):143001.
  • Jinnouchi R, Lahnsteiner J, Karsai F, et al. Phase transitions of hybrid perovskites simulated by machine-learning force fields trained on the fly with Bayesian inference. Phys Rev Lett. 2019;122(22):225701.
  • Wang H, Zhang L, Han J, et al. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput Phys Commun. 2018;228:178–184.
  • Zhang L, Han J, Wang H, et al. End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems. Adv. Neural Inf. Process. Syst. 2018;31: 4441–4451.
  • Jiang W, Zhang Y, Zhang L, et al. Accurate deep potential model for the Al–Cu–Mg alloy in the full concentration space. Chin Phys B. 2021;30(5):050706.
  • Jia W, Wang H, Chen M, et al. (2020). Pushing the limit of molecular dynamics with Ab initio accuracy to 100 million atoms with machine learning. Paper presented at: The SC20: International Conference for High Performance Computing, Networking, Storage and Analysis.
  • Wen T, Wang R, Zhu L, et al. Specialising neural network potentials for accurate properties and application to the mechanical response of titanium. Npj Comput Mater. 2021;7(1): 206.
  • Zhang C, Yue S, Panagiotopoulos AZ, et al. Dissolving salt is not equivalent to applying a pressure on water. Nat Commun. 2022;13(1):822.
  • Zhou Y, Zheng H, Li W, et al. A deep learning potential applied in tobermorite phases and extended to calcium silicate hydrates. Cem Concr Res. 2022;152:106685.
  • Cong X, Kirkpatrick RJ. 29Si MAS NMR study of the structure of calcium silicate hydrate. Adv Cem Based Mater. 1996;3(3–4):144–156.
  • Hou D, Ma H, Zhu Y, et al. Calcium silicate hydrate from dry to saturated state: structure, dynamics and mechanical properties. Acta Mater. 2014;67:81–94.
  • Zhou Y, Hou D, Jiang J, et al. Reactive molecular simulation on the calcium silicate hydrates/polyethylene glycol composites. Chem Phys Lett. 2017;687:184–187.
  • Zhou Y, Hou D, Manzano H, et al. Interfacial connection mechanisms in calcium-silicate-hydrates/polymer nanocomposites: a molecular dynamics study. ACS Appl Mater Interf. 2017;9(46):41014–41025.
  • Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter. 1996;54(16):11169–11186.
  • Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132(15):154104.
  • VASP. 2022. Molecular dynamics calculations. Available from https://www.vasp.at/wiki/index.php/Molecular_dynamics_calculations.
  • Lu D, Jiang W, Chen Y, et al. 2021. DP Train, then DP Compress: Model Compression in Deep Potential Molecular Dynamics. arXiv:2107.02103. https://ui.adsabs.harvard.edu/abs/2021arXiv210702103L.
  • Wang J, Hou T. Application of molecular dynamics simulations in molecular property prediction II: diffusion coefficient. J Comput Chem. 2011;32(16):3505–3519.
  • Wang V, Xu N, Liu J-C, et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput Phys Commun. 2021;267:108033.
  • Voigt W. Lehrbook, der kristallphysik. 2nd ed. Leipsig: Teubner; 1928.
  • Reuss A. Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. Z Angew Math Mech. 1929;9(1):49–58.
  • Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc A. 1952;65(5):349–354.
  • Soyer-Uzun S, Chae SR, Benmore CJ, et al. Compositional evolution of calcium silicate hydrate (C-S-H) structures by total X-ray scattering. J Am Ceram Soc. 2012;95(2):793–798.
  • Zhou Y, Hou D, Geng G, et al. Insights on the interfacial strengthening mechanisms of calcium-silicate-hydrate/polymer nanocomposites. Phys Chem Chem Phys. 2018;20(12):8247–8266.
  • Manzano H, Dolado JS, Ayuela A. Elastic properties of the main species present in Portland cement pastes. Acta Mater. 2009;57(5):1666–1674.
  • Zhou Y, Orozco CA, Duque-Redondo E, et al. Modification of poly(ethylene glycol) on the microstructure and mechanical properties of calcium silicate hydrates. Cem Concr Res. 2019;115:20–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.