264
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A systematic review on properties of magnesium phosphate cement modified by mineral admixtures

, &

References

  • Soudée E, Péra J. Mechanism of setting reaction in magnesia-phosphate cements. Cem Concr Res. 2000;30(2):315–321.
  • Wang X, Hu X, Yang J, et al. Research progress on interfacial bonding between magnesium phosphate cement and steel: a review. Constr Build Mater. 2022;342:127925.
  • Pyo J-Y, Um W, Heo J. Magnesium potassium phosphate cements to immobilize radioactive concrete wastes generated by decommissioning of nuclear power plants. Nuclear Eng Technol. 2021;53(7):2261–2267.
  • Buj I, Torras J, Rovira M, et al. Leaching behaviour of magnesium phosphate cements containing high quantities of heavy metals. J Hazard Mater. 2010;175(1-3):789–794.
  • Mestres G, Abdolhosseini M, Bowles W, et al. Antimicrobial properties and dentin bonding strength of magnesium phosphate cements. Acta Biomater. 2013;9(9):8384–8393.
  • Weng Y, Ruan S, Li M, et al. Feasibility study on sustainable magnesium potassium phosphate cement paste for 3D printing. Constr Build Mater. 2019;221:595–603.
  • Haque MA, Chen B. Research progresses on magnesium phosphate cement: a review. Constr Build Mater. 2019;211:885–898.
  • Shi J, Zhao J, Chen H, et al. Sulfuric acid-resistance performances of magnesium phosphate cements: macro-properties, mineralogy and microstructure evolutions. Cem Concr Res. 2022;157:106830.
  • Jiang Z, Qian C, Chen Q. Experimental investigation on the volume stability of magnesium phosphate cement with different types of mineral admixtures. Constr Build Mater. 2017;157:10–17.
  • Yang Q, Wu X. Factors influencing properties of phosphate cement-based binder for rapid repair of concrete11. This paper was originally submitted to advanced cement based materials. The paper was received at the editorial office of cement and concrete research on 19 August 1998 and accepted in final form 2 December 1998. Cem Concr Res. 1999;29(3):389–396.
  • Walling SA, Provis JL. Magnesia-based cements: a journey of 150 years, and cements for the future? Chem Rev. 2016;116:4170–4204.
  • Lahalle H, Patapy C, Glid M, et al. Microstructural evolution/durability of magnesium phosphate cement paste over time in neutral and basic environments. Cem Concr Res. 2019;122:42–58.
  • Wagh AS. Chapter 9 – magnesium phosphate ceramics. In: Arun S, editor. Wagh,Chemically Bonded Phosphate Ceramics. 2nd ed. Elsevier; 2016. p. 115–131.
  • Fang B, Hu Z, Shi T, et al. Research progress on the properties and applications of magnesium phosphate cement. Ceram Int. 2023;49(3):4001–4016.
  • Xu B, Ma H, Shao H, et al. Influence of fly ash on compressive strength and micro-characteristics of magnesium potassium phosphate cement mortars. Cem Concr Res. 2017;99:86–94.
  • Gardner LJ, Bernal SA, Walling SA, et al. Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag. Cem Concr Res. 2015;74:78–87.
  • Haque MA, Chen B, Li S. Water-resisting performances and mechanisms of magnesium phosphate cement mortars comprising with fly-ash and silica fume. J Cleaner Prod. 2022;369:133347.
  • Mo L, Lv L, Deng M, et al. Influence of fly ash and metakaolin on the microstructure and compressive strength of magnesium potassium phosphate cement paste. Cem Concr Res. 2018;111:116–129.
  • Ruan W, Ma Y, Liao J, et al. Effects of steel slag on the microstructure and mechanical properties of magnesium phosphate cement. J Build Eng. 2022;49:104120.
  • Zhang Z, Wang Q, Huang Z. Value-added utilization of copper slag to enhance the performance of magnesium potassium phosphate cement. Resour Conserv Recycl. 2022;180:106212.
  • Xu B, Lothenbach B, Winnefeld F. Influence of wollastonite on hydration and properties of magnesium potassium phosphate cements. Cem Concr Res. 2020;131:106012.
  • Liu J, Yan Y, Li Z, et al. Investigation on the potassium magnesium phosphate cement modified by pretreated red mud: basic properties, water resistance and hydration heat. Constr Build Mater. 2023;368:130456.
  • Feng H, Liang J, Pang Y, et al. Effects of the fly ash and water glass on the mechanical properties and water stability of the high ductile magnesium phosphate cement-based composite. Constr Build Mater. 2022;333:127395.
  • Luo Z, Ma Y, Mu W, et al. Magnesium phosphate cement prepared with electric furnace ferronickel slag: properties and its hydration mechanism. Constr Build Mater. 2021;300:123991.
  • Liu R, Yang Y, Sun S. Effect of M/P and borax on the hydration properties of magnesium potassium phosphate cement blended with large volume of fly ash. J Wuhan Univ Technol-Mat Sci Edit. 2018;33(5):1159–1167.
  • Jianming Y, Luming W, Jie Z. Experimental study on the deformation characteristics of magnesium potassium phosphate cement paste at early hydration ages. Cem Concr Compos. 2019;103:175–182.
  • Yi G, Ma C, Long G, et al. Effects of metakaolin on a novel aerated magnesium phosphate cement with high early strength. Constr Build Mater. 2018;187:1130–1133.
  • Qin Z, Ma C, Zheng Z, et al. Effects of metakaolin on properties and microstructure of magnesium phosphate cement. Constr Build Mater. 2020;234:117353.
  • Liu Y, Qin Z, Chen B. Experimental research on magnesium phosphate cements modified by red mud. Constr Build Mater. 2020;231:117131.
  • Ahmad MR, Chen B. Effect of silica fume and basalt fiber on the mechanical properties and microstructure of magnesium phosphate cement (MPC) mortar. Constr Build Mater. 2018;190:466–478.
  • Xu B, Lothenbach B, Ma H. Properties of fly ash blended magnesium potassium phosphate mortars: effect of the ratio between fly ash and magnesia. Cem Concr Compos. 2018;90:169–177.
  • Li Y, Shi T, Li J. Effects of fly ash and quartz sand on water-resistance and salt-resistance of magnesium phosphate cement. Constr Build Mater. 2016;105:384–390.
  • Lu K, Wang B, Han Z, et al. Experimental study of magnesium ammonium phosphate cements modified by fly ash and metakaolin. J Build Eng. 2022;51:104137.
  • Liu K, Ma S, Zhang Z, et al. Hydration and properties of magnesium potassium phosphate cement modified by granulated Blast-Furnace slag: influence of fineness. Materials (Basel). 2022;15(3):918.
  • Ruan W, Liao J, Mo J, et al. Effects of red mud on properties of magnesium phosphate cement-based grouting material and its bonding mechanism with coal rock. Ceram Int. 2023;49(2):2015–2025.
  • Yang J, Lu J, Wu Q, et al. Influence of steel slag powders on the properties of MKPC paste. Constr Build Mater. 2018;159:137–146.
  • Feng H, Liang J, Guo A, et al. Development and design of ultra-high ductile magnesium phosphate cement-based composite using fly ash and silica fume. Cem Concr Compos. 2023;137:104923.
  • Dong D, Huang Y, Pei Y, et al. Effect of spherical silica fume and fly ash on the rheological property, fluidity, setting time, compressive strength, water resistance and drying shrinkage of magnesium ammonium phosphate cement. J Build Eng. 2023;63:105484.
  • Wang Q, Wang D, Chen H. The role of fly ash microsphere in the microstructure and macroscopic properties of high-strength concrete. Cem Concr Compos. 2017;83:125–137.
  • Giergiczny Z. Fly ash and slag. Cem Concr Res. 2019;124:105826.
  • Gardner LJ, Corkhill CL, Walling SA, et al. Early age hydration and application of blended magnesium potassium phosphate cements for reduced corrosion of reactive metals. Cem Concr Res. 2021;143:106375.
  • Li T, Xu X, Yang J, et al. Effect of fly ash on the rheological properties of potassium magnesium phosphate cement paste. Case Stud Constr Mater. 2022;17:e01650.
  • Ahmad MR, Chen B, Yu J. A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultrafine fly ash. Composites Part B: Eng. 2019;168:204–217.
  • Mahyar M, Erdoğan ST. Phosphate-activated high-calcium fly ash acid-base cements. Cem Concr Compos. 2015;63:96–103.
  • Lu SG, Bai SQ, Zhu L, et al. Removal mechanism of phosphate from aqueous solution by fly ash. J Hazard Mater. 2009;161(1):95–101.
  • Li Y, Chen B. Factors that affect the properties of magnesium phosphate cement. Constr Build Mater. 2013;47:977–983.
  • Lv L, Huang P, Mo L, et al. Properties of magnesium potassium phosphate cement pastes exposed to water curing: a comparison study on the influences of fly ash and metakaolin. Constr Build Mater. 2019;203:589–600.
  • Liu Y, Chen B, Dong B, et al. Influence mechanisms of fly ash in magnesium ammonium phosphate cement. Constr Build Mater. 2022;314:125581.
  • Chong L, Yang J, Shi C. Effect of curing regime on water resistance of magnesium–potassium phosphate cement. Constr Build Mater. 2017;151:43–51.
  • Liao W, Ma H, Sun H, et al. Potential large-volume beneficial use of low-grade fly ash in magnesia-phosphate cement based materials. Fuel. 2017;209:490–497.
  • Seehra SS, Gupta S, Kumar S. Rapid setting magnesium phosphate cement for quick repair of concrete pavements—characterisation and durability aspects. Cem Concr Res. 1993;23(2):254–266.
  • De Campos M, Davy CA, Djelal N, et al. Development of a stoichiometric magnesium potassium phosphate cement (MKPC) for the immobilization of powdered minerals. Cem Concr Res. 2021;142:106346.
  • Jianming Y, Luming W, Cheng J, et al. Effect of fly ash on the corrosion resistance of magnesium potassium phosphate cement paste in sulfate solution. Constr Build Mater. 2020;237:117639.
  • Yang Y, Liu J, Wang B, et al. Properties of fly ash blended magnesium potassium phosphate cement cured in presence of sulfuric acid. Constr Build Mater. 2020;244:118349.
  • Zheng D, Wang D, Cui H, et al. Hydration characteristics of cement with high volume circulating fluidized bed fly ash. Constr Build Mater. 2023;380:131310.
  • Yao L, Shuo Z, Jun L. Analysis of the synergistic effect of particle size of compound mineral admixtures on the hydration properties and porosity of Portland cement under low-temperature conditions. Mater Today Commun. 2022;33:104372.
  • Gallias JL, Kara-Ali R, Bigas JP. The effect of fine mineral admixtures on water requirement of cement pastes. Cem Concr Res. 2000;30(10):1543–1549.
  • Tironi A, Trezza MA, Scian AN, et al. Assessment of pozzolanic activity of different calcined clays. Cem Concr Compos. 2013;37:319–327.
  • Cyr M, Trinh M, Husson B, et al. Effect of cement type on metakaolin efficiency. Cem Concr Res. 2014;64:63–72.
  • He Z, Zhu H, Shi J, et al. Multi-scale characteristics of magnesium potassium phosphate cement modified by metakaolin. Ceram Int. 2022;48(9):12467–12475.
  • Shi Y, Chen B, Ahmad MR. Effects of alumina as an effective constituent of metakaolin on properties of magnesium phosphate cements. J Mater Civ Eng. 2019;31:04019147.
  • Lu X, Chen B. Experimental study of magnesium phosphate cements modified by metakaolin. Constr Build Mater. 2016;123:719–726.
  • Qin Z, Zhou S, Ma C, et al. Roles of metakaolin in magnesium phosphate cement: effect of the replacement ratio of magnesia by metakaolin with different particle sizes. Constr Build Mater. 2019;227:116675.
  • Zhao Z, Chen M, Zhong X, et al. Effects of bentonite, diatomite and metakaolin on the rheological behavior of 3D printed magnesium potassium phosphate cement composites. Addit Manuf. 2021;46:102184.
  • Wang M, Liu Q, Liang X, et al. Influence of metakaolin on properties of magnesium potassium phosphate cement with high water-to-Solid ratio. J Mater Civ Eng. 2022;34:04022227.
  • Vandeperre LJ, Liska M, Al-Tabbaa A. Microstructures of reactive magnesia cement blends. Cem Concr Compos. 2008;30(8):706–714.
  • Qiao F, Chau CK, Li Z. Property evaluation of magnesium phosphate cement mortar as patch repair material. Constr Build Mater. 2010;24(5):695–700.
  • Gao M, Chen B, Lang L, et al. Influence of silica fume on mechanical properties and water resistance of magnesium–ammonium phosphate cement. J Mater Civ Eng. 2020;32:04019368.
  • Xu X, Lin X, Pan X, et al. Influence of silica fume on the setting time and mechanical properties of a new magnesium phosphate cement. Constr Build Mater. 2020;235:117544.
  • Dai J, Wang Q, Xie C, et al. The effect of fineness on the hydration activity index of ground granulated blast furnace slag. Materials. 2019;12(18):2984.
  • Ma C, Liu Y, Shi J, et al. Influencing mechanism of silica fume on early-age properties of magnesium phosphate cement-based coating for hydraulic structure. J Build Eng. 2022;54:104623.
  • Wu R, Xiao Y, Zhang P, et al. Asphalt VOCs reduction of zeolite synthesized from solid wastes of red mud and steel slag. J Cleaner Prod. 2022;345:131078.
  • Ji R, Liu T-J, Kang L-L, et al. A review of metallurgical slag for efficient wastewater treatment: pretreatment, performance and mechanism. J Cleaner Prod. 2022;380:135076.
  • IOPscience, n.d. Study on magnesium phosphate cement modified by steel slag. Accessed February 9, 2023. https://iopscience.iop.org/article/10.1088/1757-899X/479/1/012078 .
  • Zhang J, Li S, Li Z, et al. Properties of red mud blended with magnesium phosphate cement paste: feasibility of grouting material preparation. Constr Build Mater. 2020;260:119704.
  • Wang L, Chen L, Guo B, et al. Red mud-enhanced magnesium phosphate cement for remediation of Pb and as contaminated soil. J Hazard Mater. 2020;400:123317.
  • Ma S, Zhang Z, Liu X, et al. Reuse of red mud in magnesium potassium phosphate cement: reaction mechanism and performance optimization. J Build Eng. 2022;61:105290.
  • Jiang Y, Ahmad MR, Chen B. Properties of magnesium phosphate cement containing steel slag powder. Constr Build Mater. 2019;195:140–147.
  • Zheng D-D, Ji T, Wang C-Q, et al. Effect of the combination of fly ash and silica fume on water resistance of magnesium–potassium phosphate cement. Constr Build Mater. 2016;106:415–421.
  • Yang Y, Liu Y, Yan Z, et al. High-temperature resistance of modified potassium magnesium phosphate cement. Materials (Basel). 2022;15(24):8967.
  • Haque MA, Chen B, Liu Y. The role of bauxite and fly-ash on the water stability and microstructural densification of magnesium phosphate cement composites. Constr Build Mater. 2020;260:119953.
  • Barnett SJ, Soutsos MN, Millard SG, et al. Strength development of mortars containing ground granulated blast-furnace slag: effect of curing temperature and determination of apparent activation energies. Cem Concr Res. 2006;36(3):434–440.
  • Narmluk M, Nawa T. Effect of fly ash on the kinetics of Portland cement hydration at different curing temperatures. Cem Concr Res. 2011;41:579–589.
  • Xu B, Winnefeld F, Lothenbach B. Effect of temperature curing on properties and hydration of wollastonite blended magnesium potassium phosphate cements. Cem Concr Res. 2021;142:106370.
  • Gardner LJ, Walling SA, Corkhill CL, et al. Temperature transformation of blended magnesium potassium phosphate cement binders. Cem Concr Res. 2021;141:106332.
  • Wagh AS. Chapter 4 – phosphate chemistry. In: Wagh AS, editor. Chemically Bonded Phosphate Ceramics. 2nd ed. Elsevier; 2016, p. 51–60.
  • Le Rouzic M, Chaussadent T, Platret G, et al. Mechanisms of k-struvite formation in magnesium phosphate cements. Cem Concr Res. 2017;91:117–122.
  • Zhang T, Chen H, Li X, et al. Hydration behavior of magnesium potassium phosphate cement and stability analysis of its hydration products through thermodynamic modeling. Cem Concr Res. 2017;98:101–110.
  • Luo Y, Zhou X, Luo Z, et al. A novel iron phosphate cement derived from copper smelting slag and its early age hydration mechanism. Cem Concr Compos. 2022;133:104653.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.