399
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Harmless treatment and recycling of secondary aluminum dross: a review

, , &

References

  • Tsakiridis PE, Oustadakis P, Agatzini-Leonardou S. Aluminium recovery during black dross hydrothermal treatment. J Environ Chem Eng. 2013;1(1-2):23–32. doi:10.1016/j.jece.2013.03.004.
  • Majidi O, Shabestari SG, Aboutalebi MR. Study of fluxing temperature in molten aluminum refining process. J Mater Process Technol. 2007;182(1-3):450–455. doi:10.1016/j.jmatprotec.2006.09.003.
  • IAI. 2022. International Aluminum Institute. Primary aluminum production. https://international-aluminium.org/statistics/primary-aluminium-production/.
  • Shinzato MC, Hypolito R. Solid waste from aluminum recycling process: characterization and reuse of its economically valuable constituents. Waste Manag. 2005;25(1):37–46. doi:10.1016/j.wasman.2004.08.005.
  • Tan RBH, Khoo HH. An LCA study of a primary aluminum supply chain. J Cleaner Prod. 2005;13(6):607–618. doi:10.1016/j.jclepro.2003.12.022.
  • Lavoie S, Dube G. A salt-free treatment of aluminum dross using plasma-heating. Jom-J Miner Metals Mater Soc. 1991;43(2):54–55. doi:10.1007/BF03220144.
  • Unlu N, Drouet MG. Comparison of salt-free aluminum dross treatment processes. Resour Conserv Recycl. 2002;36(1):61–72. doi:10.1016/S0921-3449(02)00010-1.
  • Drouet MG, Handfield M, Meunier J, et al. Dross treatment in a rotary arc furnace with graphite-electrodes. Jom-J Miner Metals Mater Soc. 1994;46(5):26–27. doi:10.1007/BF03220691.
  • Huang XL, El Badawy A, Arambewela M, et al. Characterization of salt cake from secondary aluminum production. J Hazard Mater. 2014;273:192–199. doi:10.1016/j.jhazmat.2014.02.035.
  • Meshram A, Singh KK. Recovery of valuable products from hazardous aluminum dross: a review. Resour Conserv Recycl. 2018;130:95–108. doi:10.1016/j.resconrec.2017.11.026.
  • Li P, Zhang M, Teng LD, et al. Recycling of aluminum salt cake: utilization of evolved ammonia. Metall Mater Trans B. 2013;44(1):16–19. doi:10.1007/s11663-012-9779-3.
  • Shinzato MC, Hypolito R. Effect of disposal of aluminum recycling waste in soil and water bodies. Environ Earth Sci. 2016;75(7):1–10. doi:10.1007/s12665-016-5438-3.
  • Mahinroosta M, Allahverdi A. Enhanced alumina recovery from secondary aluminum dross for high purity nanostructured γ-alumina powder production: kinetic study. J Environ Manage. 2018;212:278–291. doi:10.1016/j.jenvman.2018.02.009.
  • Mahinroosta M, Allahverdi A. Hazardous aluminum dross characterization and recycling strategies: a critical review. J Environ Manage. 2018;223:452–468. doi:10.1016/j.jenvman.2018.06.068.
  • Bruckard W, Woodcock J. Recovery of valuable materials from aluminium salt cakes. Int J Miner Process. 2009;93(1):1–5. doi:10.1016/j.minpro.2009.05.002.
  • Hwang J, Huang X, Xu Z. Recovery of metals from aluminum dross and saltcake. JMMCE. 2006;05(1):47–62. doi:10.4236/jmmce.2006.51003.
  • Lucheva B, Tsonev T, Petkov R. Non-waste aluminium dross recycling. J Univ Chem Technol Metall. 2005;40:335–338.
  • Ozerkan NG, Maki OL, Anayeh MW, et al. The effect of aluminium dross on mechanical and corrosion properties of concrete. Int J Innov Sci Eng Technol. 2014;3, https://www.semanticscholar.org/paper/The-Effect-of-Aluminium-Dross-on-Mechanical-and-of-Ozerkan-Maki/180f887e615774466d2175f2ec5148b59d6f0518.
  • Li Y, Qin Z, Li C, et al. Hazardous characteristics and transformation mechanism in hydrometallurgical disposing strategy of secondary aluminum dross. J Environ Chem Eng. 2021;9(6):106470. doi:10.1016/j.jece.2021.106470.
  • Davies M, Smith P, Bruckard WJ, et al. Treatment of salt cakes by aqueous leaching and Bayer-type digestion. Miner Eng. 2008;21(8):605–612. doi:10.1016/j.mineng.2007.12.001.
  • Calder GV, Stark Timothy D. Aluminum reactions and problems in municipal solid waste landfills. Pract Period Hazard Toxic Radioact Waste Manage. 2010;14(4):258–265. doi:10.1061/(ASCE)HZ.1944-8376.0000045.
  • Tenorio JAS, Carboni MC, Espinosa DCR. Recycling of aluminum – effect of fluoride additions on the salt viscosity and on the alumina dissolution. J Light Met. 2001;1(3):195–198. doi:10.1016/S1471-5317(01)00013-X.
  • Brough D, Jouhara H. The aluminium industry: a review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. Int J Thermofluids. 2020;1-2:100007. doi:10.1016/j.ijft.2019.100007.
  • Zhou B, Yang Y, Reuter MA, et al. Modelling of aluminium scrap melting in a rotary furnace. Miner Eng. 2006;19(3):299–308. doi:10.1016/j.mineng.2005.07.017.
  • Meshram A, Jha R, Varghese S. Towards recycling: understanding the modern approach to recover waste aluminium dross. Mater Today: proc. 2021;46:1487–1491. doi:10.1016/j.matpr.2020.11.423.
  • Li J, Wang J, Chen H, et al. Microstructure observation of β-sialon-15R ceramics synthesized from aluminum dross. Ceram Int. 2012;38(4):3075–3080. doi:10.1016/j.ceramint.2011.12.006.
  • Shi M, Li Y, Ni P. Recycling valuable elements from aluminum dross. Int J Environ Sci Technol. 2022;19(12):12069–12078. doi:10.1007/s13762-022-03925-2.
  • Zawrah MF, Wassel AR, Youness RA, et al. Recycling of aluminum dross and silica fume wastes for production of mullite-containing ceramics: powder preparation, sinterability and properties. Ceram Int. 2022;48(21):31661–31671. doi:10.1016/j.ceramint.2022.07.087.
  • Dash B, Das BR, Tripathy BC, et al. Acid dissolution of alumina from waste aluminium dross. Hydrometallurgy. 2008;92(1-2):48–53. doi:10.1016/j.hydromet.2008.01.006.
  • Liu NW, Chou MS. Reduction of secondary aluminum dross by a waste pickling liquor containing ferrous chloride. Sustainable Environ Res. 2013;23:61–67.
  • Li HQ, Hui JB, Wang CY, et al. Extraction of alumina from coal fly ash by mixed-alkaline hydrothermal method. Hydrometallurgy. 2014;147-148:183–187. doi:10.1016/j.hydromet.2014.05.012.
  • Sposito G. 1995. The Environmental Chemistry of Aluminum.
  • May HM, Helmke PA, Jackson ML. Gibbsite solubility and thermodynamic properties of hydroxy-aluminum ions in aqueous-solution at 25-degrees-C. Geochim Cosmochim Acta. 1979;43(6):861–868. doi:10.1016/0016-7037(79)90224-2.
  • Kittrick JA. The free energy of formation of gibbsite and Al(OH)4- from solubility measurements. Soil Sci Soc Am J. 1966;30(5):595–598. doi:10.2136/sssaj1966.03615995003000050018x.
  • Amer AM. Aluminum extraction from aluminum industrial wastes. JOM. 2010;62(5):60–63. doi:10.1007/s11837-010-0080-0.
  • Zhao XX, Liu Y, Lyu GZ, et al. Removal of fluorine, chlorine, and nitrogen from aluminum dross by wet process. Light Metals. 2022;2022:48–55.
  • Li P, Guo M, Zhang M, et al. Leaching process investigation of secondary aluminum dross: the effect of CO2 on leaching process of salt cake from aluminum remelting process. Metall Mater Trans B. 2012;43(5):1220–1230. doi:10.1007/s11663-012-9678-7.
  • Liu FQ, Zuo ZP, Han JS, et al. Removal process and kinetics of nitrogen and chlorine removal from black aluminum dross. J. Sustain. Metall. 2021;7(4):1805–1818. doi:10.1007/s40831-021-00461-0.
  • Shi M, Yu AX, Li Y. Production of alumina from secondary aluminum dross by hydrometallurgical process. JOM. 2023;75(2):291–300. doi:10.1007/s11837-022-05599-0.
  • Yang H-L, Li Z-S, Ding Y-D, et al. Hydrolysis behavior and kinetics of AlN in aluminum dross during the hydrometallurgical process. Materials 2022;15(16):5499. doi:10.3390/ma15165499.
  • Zhanbing L, Li H, Huang X, et al. Removal of nitrides and fluorides from secondary aluminum dross by catalytic hydrolysis and its mechanism. Heliyon 2023;9(1):e12893. doi:10.1016/j.heliyon.2023.e12893.
  • Zhang GH, Hou XM, Chou KC. Kinetics of non-isothermal oxidation of AlN powder. J Eur Ceram Soc. 2010;30(2):629–633. doi:10.1016/j.jeurceramsoc.2009.07.029.
  • Shen HL, Liu B, Ekberg C, et al. Harmless disposal and resource utilization for secondary aluminum dross: a review. Sci Total Environ. 2021;760:143968. doi:10.1016/j.scitotenv.2020.143968.
  • Yang Q, Li Q, Zhang GF, et al. Investigation of leaching kinetics of aluminum extraction from secondary aluminum dross with use of hydrochloric acid. Hydrometallurgy 2019;187:158–167. doi:10.1016/j.hydromet.2019.05.017.
  • Wang JH, Zhong YQ, Tong Y, et al. Removal of AlN from secondary aluminum dross by pyrometallurgical treatment. J Cent South Univ. 2021;28(2):386–397. doi:10.1007/s11771-021-4610-4.
  • Lv SS, Zhang Y, Ni HJ, et al. Effects of additive and roasting processes on nitrogen removal from aluminum dross. Coatings. 2022;12(6):730. doi:10.3390/coatings12060730.
  • Li S, Liu WC, Liu ZK, et al. Experimental study on oxidizing roasting process of black dross. Trans Indian Inst Met. 2019;72(9):2293–2298. doi:10.1007/s12666-019-01678-0.
  • Zhang SY, Ren FY, Ding HX, et al. Recycling aluminum dross as a mineral admixture in CaO-activated superfine slag. Constr Build Mater. 2021;279:122434. doi:10.1016/j.conbuildmat.2021.122434.
  • Ni HJ, Lu CY, Zhang Y, et al. Effects of sodium carbonate and calcium oxide on roasting denitrification of recycled aluminum dross with high nitrogen content. Coatings. 2022;12(7):922. doi:10.3390/coatings12070922.
  • Gomes SA, Ramaswamy P. Plasma sprayed magnesium aluminate and alumina composite coatings from waste aluminum dross. Mater Today Proc. 2022;66:2568–2574. doi:10.1016/j.matpr.2022.07.108.
  • Li JW, Jia AG, Hou XS, et al. Thermal co-treatment of aluminum dross and municipal solid waste incineration fly ash: mineral transformation, crusting prevention, detoxification, and low-carbon cementitious material preparation. J Environ Manage. 2023;329:117090. doi:10.1016/j.jenvman.2022.117090.
  • Amirsalari A, Shayesteh SF. Effects of pH and calcination temperature on structural and optical properties of alumina nanoparticles. Superlattices Microstruct. 2015;82:507–524. doi:10.1016/j.spmi.2015.01.044.
  • Jimenez JA, Padilla I, Lopez-Delgado A, et al. Characterization of the aluminas formed during the thermal decomposition of boehmite by the rietveld refinement method. Int. J. Appl. Ceram. Technol. 2015;12: E178–E186. doi:10.1111/ijac.12283.
  • Trunov MA, Schoenitz M, Dreizin EL. Ignition of aluminum powders under different experimental conditions. Propellants Explos Pyrotech. 2005;30(1):36–43. doi:10.1002/prep.200400083.
  • Trunov MA, Schoenitz M, Zhu XY, et al. Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust Flame. 2005;140(4):310–318. doi:10.1016/j.combustflame.2004.10.010.
  • Lin WC, Tsai CH, Zhang DN, et al. Recycling of aluminum dross for producing calcinated alumina by microwave plasma. Sustain Environ Res. 2022;32(1), 50. doi:10.1186/s42834-022-00160-9.
  • Choo TF, Salleh MAM, Kok KY, et al. Characterization of high-temperature hierarchical porous mullite washcoat synthesized using aluminum dross and coal fly ash. Crystals. 2020;10(3):178. doi:10.3390/cryst10030178.
  • Wajima T. A novel process for recycling of aluminum dross using alkali fusion. Mater Trans. 2020;61(11):2208–2215. doi:10.2320/matertrans.M-M2020849.
  • Shen HL, Liu B, Liu Y, et al. Phase transition during nucleation process in calcium aluminate glass-ceramics manufactured from secondary aluminum dross. J Alloys Compd. 2022;911:165010. doi:10.1016/j.jallcom.2022.165010.
  • Sarker MSR, Alam MZ, Qadir MR, et al. Extraction and characterization of alumina nanopowders from aluminum dross by acid dissolution process. Int J Miner Metall Mater. 2015;22(4):429–436. doi:10.1007/s12613-015-1090-2.
  • Abd-El-Raoof F, Tawfik A, Komarneni S, et al. Hydrotalcite and hydrocalumite as resources from waste materials of concrete aggregate and Al-dross by microwave-hydrothermal process. Constr Build Mater. 2019;207:10–16. doi:10.1016/j.conbuildmat.2019.02.105.
  • Li X, Ou Y, Li C, et al. Preparation of alumina from aluminum ash by sintering with sodium hydroxide. IOP Conf Ser: Earth Environ Sci. 2019;233(4):42027. doi:10.1088/1755-1315/233/4/042027.
  • Oner IE, Polat BT, Kan S, et al. 2022. Evaluation of aluminum white dross 12th International Symposium on High-Temperature Metallurgical Processing; p. 413–422. doi:10.1007/978-3-030-92388-4_37.
  • Mohammadzadeh K, Mahinroosta M, Allahverdi A, et al. Non-supercritical drying synthesis and characterization of monolithic alumina aerogel from secondary aluminum dross. Ceram Int. 2022;48(9):13154–13162. doi:10.1016/j.ceramint.2022.01.192.
  • Philipson H, Solbakk GL, Wallin M, et al. Innovative utilization of aluminum-based secondary materials for production of metallurgical silicon and alumina-rich slag. Light Metals. 2022;2022:1038–1045.
  • Xu L, Zhang DY, Liu Y, et al. Iron recovery from waste copper slag by using coal and secondary aluminum dross as Co-reductants. JOM. 2022;74(5):2029–2036. doi:10.1007/s11837-022-05218-y.
  • Shen HL, Liu B, Liu Y, et al. Recovery of iron and titanium in red mud with secondary aluminum dross followed by manufacturing glass ceramics. JOM. 2023;75(2):321–330. doi:10.1007/s11837-022-05613-5.
  • Zhang LX, Chen M. Recovery of valuable metals and production of Fe-V crude alloy from Vanadium-Enriched slag using aluminum dross as a reductant. Jom. 2023;75(4):1180–1191. doi:10.1007/s11837-022-05561-0.
  • Guney H, Guner O, Boncuk FF, et al. A decarbonization approach for FeCr production. J. Sustain. Metall. 2023;9(1):216–229. doi:10.1007/s40831-022-00632-7.
  • Gallardo-Heredia M, Almanza-Robles JM, Magallanes-Rivera RX, et al. Calcium sulfoaluminate cement pastes from industrial wastes: effect of hemihydrate content. Mater Struct. 2017;50(1):93. doi:10.1617/s11527-016-0960-z.
  • Mao YP, Wu H, Wang WL, et al. Pretreatment of municipal solid waste incineration fly ash and preparation of solid waste source sulphoaluminate cementitious material. J Hazard Mater. 2020;385:121580. doi:10.1016/j.jhazmat.2019.121580.
  • Yao Y, Wang W, Ge Z, et al. Hydration study and characteristic analysis of a sulfoaluminate high-performance cementitious material made with industrial solid wastes. Cem Concr Compos. 2020;112:103687. doi:10.1016/j.cemconcomp.2020.103687.
  • Shen HL, Liu B, Shi ZS, et al. Reduction for heavy metals in pickling sludge with aluminum nitride in secondary aluminum dross by pyrometallurgy, followed by glass ceramics manufacture. J Hazard Mater. 2021;418:126331. doi:10.1016/j.jhazmat.2021.126331.
  • Yang HL, Li ZS, Ding YD, et al. Effect of silicon source (fly ash, silica dust, gangue) on the preparation of porous mullite ceramics from aluminum dross. Materials 2022;15(20):7212. doi:10.3390/ma15207212.
  • Cinarli U, Turan A. Investigation of alumina-based ceramic production from aluminum black dross. Mining Metall Explor. 2021;38(1):257–267. doi:10.1007/s42461-020-00344-0.
  • Li J, Wang J, Chen H, et al. Synthesis of beta-SiAlON-AlN-Polytypoid ceramics from aluminum dross. Mater Trans. 2010;51(5):844–848. doi:10.2320/matertrans.MH200913.
  • Ewais EMM, Besisa NHA. Tailoring of magnesium aluminum titanate based ceramics from aluminum dross. Mater Design. 2018;141:110–119. doi:10.1016/j.matdes.2017.12.027.
  • Liu JC, Xu JM, Zhang YB, et al. Co-utilization of secondary aluminum dross and ferronickel slag for preparation of cordierite-mullite insulating ceramic. J Am Ceram Soc. 2023;106(3):2049–2060. doi:10.1111/jace.18878.
  • Liu YQ, Leong BS, Hu ZT, et al. Autoclaved aerated concrete incorporating waste aluminum dust as foaming agent. Constr Build Mater. 2017;148:140–147. doi:10.1016/j.conbuildmat.2017.05.047.
  • Liu Y, Yang JJ, Shen HL, et al. Synthesis of porous glass ceramics with hierarchical and interconnected pores from secondary aluminum dross and waste glass. Ceram Int. 2022;48(23):34364–34373. doi:10.1016/j.ceramint.2022.08.014.
  • Sassi M, Simon A. Waste-to-reuse foam glasses produced from soda-lime-silicate glass, cathode ray tube glass, and aluminium dross. Inorganics. 2021;10(1):1. doi:10.3390/inorganics10010001.
  • Zhang J, Liu B, Zhao S, et al. Preparation and characterization of glass ceramic foams based on municipal solid waste incineration ashes using secondary aluminum ash as foaming agent. Constr Build Mater. 2020;262:120781. doi:10.1016/j.conbuildmat.2020.120781.
  • Zhang Y, Guo ZH, Han ZY, et al. Feasibility of aluminum recovery and MgAl2O4 spinel synthesis from secondary aluminum dross. Int J Miner Metall Mater. 2019;26(3):309–318. doi:10.1007/s12613-019-1739-3.
  • Ni HJ, Wu WY, Lu CY, et al. Preparation of aluminum dross non-fired bricks with high nitrogen concentration and optimization of process parameters. Appl Sci-Basel. 2022;12(12):6133. doi:10.3390/app12126133.
  • Zhang Y, Ni HJ, Lv SS, et al. Preparation of sintered brick with aluminum dross and optimization of process parameters. Coatings. 2021;11(9):1039. doi:10.3390/coatings11091039.
  • Adeosun SO, Akpan EI, Dada MO. Refractory characteristics of aluminum Dross-Kaolin composite. JOM. 2014;66(11):2253–2261. doi:10.1007/s11837-014-1179-5.
  • Finnveden G, Hauschild MZ, Ekvall T, et al. Recent developments in life cycle assessment. J Environ Manage. 2009;91(1):1–21. doi:10.1016/j.jenvman.2009.06.018.
  • Standardization, I. O. f. 2006. ISO 14040:2006 - Environmental management – Life cycle assessment – Principles and framework. In (Vol. ISO 14040:2006): Krozer J, Vis J C.
  • Curran M. Strengths and Limitations of Life Cycle Assessment. In: Klöpffer W, editor. Background and Future Prospects in Life Cycle Assessment. LCA Compendium – The Complete World of Life Cycle Assessment. Dordrecht: Springer; 2014. doi:10.1007/978-94-017-8697-3_6.
  • Enzmann F. Measuring sustainability strengths and limitations of life cycle assessments for surfactants and detergents. J Am Oil Chem Soc. 2022;99:188–189.
  • Zhou ZZ, Tang YJ, Chi Y, et al. Waste-to-energy: a review of life cycle assessment and its extension methods. Waste. Waste Manag Res. 2018;36(1):3–16. doi:10.1177/0734242X17730137.
  • Hong JP, Wang J, Chen HY, et al. Process of aluminum dross recycling and life cycle assessment for Al-Si alloys and brown fused alumina. Trans Nonferrous Met Soc China. 2010;20(11):2155–2161. doi:10.1016/S1003-6326(09)60435-0.
  • Zhu XY, Jin Q. Comparison of three emerging dross recovery processes in China’s aluminum industry from the perspective of life cycle assessment. ACS Sustainable Chem. Eng. 2021;9(19):6776–6787. doi:10.1021/acssuschemeng.1c00960.
  • Zhu XY, Jin Q, Ye Z. Life cycle environmental and economic assessment of alumina recovery from secondary aluminum dross in China. J Cleaner Prod. 2020;277:123291. doi:10.1016/j.jclepro.2020.123291.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.