235
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Development of novel ultra-high-performance lightweight concrete modified with dehydrated cement powder and aerogel

, , , &

References

  • Luan C, Zhang Q, Wu Z, et al. Uncovering the role of hydrophobic silica fume (HPS) in rheology, hydration, and microstructure of ultra-high-performance concrete (UHPC). J Sustain Cem Mater. 2023;12(11):1399–1413. doi: 10.1080/21650373.2023.2222398.
  • Zaid O, Zamir Hashmi SR, El Ouni MH, et al. Experimental and analytical study of ultra-high-performance fiber-reinforced concrete modified with egg shell powder and nano-silica. J Mater Res Technol. 2023;24:7162–7188. doi: 10.1016/j.jmrt.2023.04.240.
  • Althoey F, Zaid O, Martínez-García R, et al. Ultra-high-performance fiber-reinforced sustainable concrete modified with silica fume and wheat straw ash. J Mater Res Technol. 2023;24:6118–6139. doi: 10.1016/j.jmrt.2023.04.179.
  • Du J, Meng W, Khayat KH, et al. New development of ultra-high-performance concrete (UHPC). Compos Part B Eng. 2021;224:109220. doi: 10.1016/j.compositesb.2021.109220.
  • Rong Z, Wang Y, Jiao M. Optimization design and microstructure analysis of ultra-high performance cement-based composites. J Sustain Cem Mater. 2023;12(11):1376–1386. doi: 10.1080/21650373.2023.2219263.
  • Salahaddin SD, Haido JH, Wardeh G. The behavior of UHPC containing recycled glass waste in place of cementitious materials: a comprehensive review. Case Stud Constr Mater. 2022;17:e01494. doi: 10.1016/j.cscm.2022.e01494.
  • Schmidt MF. 2013. Sustainable building with ultra-high performance concrete (UHPC) – coordinated research program in Germany.
  • Khan MA, Ayub Khan S, Khan B, et al. Investigating the feasibility of producing sustainable and compatible binder using marble waste, fly ash, and rice husk ash: a comprehensive research for material characteristics and production. Results Eng. 2023;20:101435. doi: 10.1016/j.rineng.2023.101435.
  • Randl N, Steiner T, Ofner S, et al. Development of UHPC mixtures from an ecological point of view. Constr Build Mater. 2014;67:373–378. doi: 10.1016/j.conbuildmat.2013.12.102.
  • Abdulkareem OM, Ben Fraj A, Bouasker M, et al. Mixture design and early age investigations of more sustainable UHPC. Constr Build Mater. 2018;163:235–246. doi: 10.1016/j.conbuildmat.2017.12.107.
  • Qian D, Yu R, Shui Z, et al. 2020. A novel development of green ultra-high performance concrete (UHPC) based on appropriate application of recycled cementitious material.
  • Abdellatief M, Elrahman MA, Elgendy G, et al. Response surface methodology-based modelling and optimization of sustainable UHPC containing ultrafine fly ash and metakaolin. Constr Build Mater. 2023;388:131696. doi: 10.1016/j.conbuildmat.2023.131696.
  • Lu J-X, Ali HA, Jiang Y, et al. A novel high-performance lightweight concrete prepared with glass-UHPC and lightweight microspheres: towards energy conservation in buildings. Compos Part B Eng. 2022;247:110295. doi: 10.1016/j.compositesb.2022.110295.
  • Head PR, Cerib MD, Industry FC, et al. Ultra high performance concrete with ultrafine particles other than silica fume, in: third int. Symp UHPC. 2012; 2012:213–225.
  • Kılıç A, Atiş CD, Yaşar E, et al. High-strength lightweight concrete made with scoria aggregate containing mineral admixtures. Cem Concr Res. 2003;33(10):1595–1599. doi: 10.1016/S0008-8846(03)00131-5.
  • Narayanan N, Ramamurthy K. Structure and properties of aerated concrete: a review. Cem Concr Compos. 2000;22(5):321–329. doi: 10.1016/S0958-9465(00)00016-0.
  • Kan A, Demirboğa R. A novel material for lightweight concrete production. Cem Concr Compos. 2009;31(7):489–495. doi: 10.1016/j.cemconcomp.2009.05.002.
  • Jelle BP. Traditional, state-of-the-art and future thermal building insulation materials and solutions – properties, requirements and possibilities. Energy Build. 2011;43(10):2549–2563. doi: 10.1016/j.enbuild.2011.05.015.
  • Adhikary SK, Rudžionis Ž, Vaičiukynienė D. Development of flowable ultra-lightweight concrete using expanded glass aggregate, silica aerogel, and prefabricated plastic bubbles. J Build Eng. 2020;31:101399. doi: 10.1016/j.jobe.2020.101399.
  • Zaid O, Alsharari F, Althoey F, et al. Assessing the performance of palm oil fuel ash and lytag on the development of ultra-high-performance self-compacting lightweight concrete with waste tire steel fibers. J Build Eng. 2023;76:107112. doi: 10.1016/j.jobe.2023.107112.
  • Calleri C, Astolfi A, Shtrepi L, et al. Characterization of the sound insulation properties of a two-layers lightweight concrete innovative façade. Appl Acoust. 2019;145:267–277. doi: 10.1016/j.apacoust.2018.10.003.
  • Chu H, Qin J, Gao L, et al. Effects of graphene oxide on mechanical properties and microstructure of ultra-high-performance lightweight concrete. J Sustain Cem Mater. 2023;12(6):647–660. doi: 10.1080/21650373.2022.2104757.
  • Mahato J, Yang J, Lee N, et al. Incorporation of a high volume of cenosphere particles in low water-to-cement matrix for developing high strength and lightweight cementitious composites. J Sustain Cem Mater. 2023;12(5):580–591. doi: 10.1080/21650373.2022.2095678.
  • Farina I, Moccia I, Salzano C, et al. Compressive and thermal properties of non-structural lightweight concrete containing industrial byproduct aggregates. Materials (Basel). 2022;15(11):4029. doi: 10.3390/ma15114029.
  • Saleh AN, Attar AA, Ahmed OK, et al. Improving the thermal insulation and mechanical properties of concrete using nano-SiO2. Results Eng. 2021;12:100303. doi: 10.1016/j.rineng.2021.100303.
  • Wang Z, Wu K, Liu S, et al. Correlation between microstructure characteristics and macroscopic behaviors of alkali residue-based foamed concrete. J Sustain Cem Mater. 2023;0:1–16. doi: 10.1080/21650373.2023.2261061.
  • Ferenc Kristály Roland Szabó FMÁD, Mucsi G. Lightweight composite from fly ash geopolymer and glass foam. J Sustain Cem Mater. 2021;10:1–22.
  • Kwek SY, Awang H. Utilization of industrial waste materials for the production of lightweight aggregates: a review. J Sustain Cem Mater. 2021;10(6):353–381. doi: 10.1080/21650373.2021.1891583.
  • Gou H, Sofi M, Özyurt N, et al. Effect of pre-saturated lightweight sand on material properties of eco-friendly lightweight cementitious composites. J Sustain Cem Mater. 2023;12(5):561–579. doi: 10.1080/21650373.2022.2095677
  • Johnson Alengaram U, Al Muhit BA, bin Jumaat MZ, et al. A comparison of the thermal conductivity of oil palm shell foamed concrete with conventional materials. Mater Des. 2013;51:522–529. doi: 10.1016/j.matdes.2013.04.078.
  • Yu R, van Onna DV, Spiesz P, et al. Development of Ultra-Lightweight fibre reinforced concrete applying expanded waste glass. J Clean Prod. 2016;112:690–701. doi: 10.1016/j.jclepro.2015.07.082.
  • Wang X, Wu D, Hou D, et al. The unification of light weight and ultra-high strength in LWC: a new homogeneity enhancement approach. Constr Build Mater. 2022;315:125647. doi: 10.1016/j.conbuildmat.2021.125647.
  • Fan D, Tian W, Yu R. Incorporation of liquid phase into solid particle packing model for precise design of low water/binder cement-based composites (LW/B-CC): modelling and experiments. Compos Part B Eng. 2022;242:110070. doi: 10.1016/j.compositesb.2022.110070.
  • Cuce E, Cuce PM, Wood CJ, et al. Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew Sustain Energy Rev. 2014;34:273–299. doi: 10.1016/j.rser.2014.03.017.
  • Dai Y-J, Tang Y-Q, Fang W-Z, et al. A theoretical model for the effective thermal conductivity of silica aerogel composites. Appl Therm Eng. 2018;128:1634–1645. doi: 10.1016/j.applthermaleng.2017.09.010.
  • Kim S, Seo J, Cha J, et al. Chemical retreating for gel-typed aerogel and insulation performance of cement containing aerogel. Constr Build Mater. 2013;40:501–505. doi: 10.1016/j.conbuildmat.2012.11.046.
  • Nosrati RH, Berardi U. Hygrothermal characteristics of aerogel-enhanced insulating materials under different humidity and temperature conditions. Energy Build. 2018;158:698–711. doi: 10.1016/j.enbuild.2017.09.079.
  • Ng S, Jelle BP, Sandberg LIC, et al. Experimental investigations of aerogel-incorporated ultra-high performance concrete. Constr Build Mater. 2015;77:307–316. doi: 10.1016/j.conbuildmat.2014.12.064.
  • Fickler S, Milow B, Ratke L, et al. Development of high performance aerogel concrete. Energy Proc. 2015;78:406–411. doi: 10.1016/j.egypro.2015.11.684.
  • ASTM C143/C143M-15a. 2015. Standard test method for slump of hydraulic-cement concrete, ASTM International.
  • ASTM C39/C39M-17. A-C. 2017. Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken.
  • Rashid K, Tariq S, Shaukat W. Attribution of molasses dosage on fresh and hardened performance of recycled aggregate concrete. Constr Build Mater. 2019;197:497–505. doi: 10.1016/j.conbuildmat.2018.11.249.
  • C518 A. 2021. Standard test method for steady-state thermal transmission properties by means of the heat flow meter apparatus.
  • ASTM C157-75. Standard test method for length change of hardened cement mortar and concrete.
  • Liu J, Shi C, Farzadnia N, et al. Effects of pretreated fine lightweight aggregate on shrinkage and pore structure of ultra-high strength concrete. Constr Build Mater. 2019;204:276–287. doi: 10.1016/j.conbuildmat.2019.01.205.
  • Luan C, Wang J, Gao J, et al. Changes in fractal dimension and durability of ultra-high performance concrete (UHPC) with silica fume content. ArchivCivMechEng. 2022;22(3):123. doi: 10.1007/s43452-022-00443-3.
  • Lee NK, Koh KT, Park SH, et al. Microstructural investigation of calcium aluminate cement-based ultra-high performance concrete (UHPC) exposed to high temperatures. Cem Concr Res. 2017;102:109–118. doi: 10.1016/j.cemconres.2017.09.004.
  • Althoey F, Zaid O, Alsulamy S, et al. Determining engineering properties of ultra-high-performance fiber-reinforced geopolymer concrete modified with different waste materials. PLoS One. 2023;18(5):e0285692. doi: 10.1371/journal.pone.0285692.
  • Piasta J, Sawicz Z, Rudzinski L. Changes in the structure of hardened cement paste due to high temperature. Mat Constr. 1984;17(4):291–296. doi: 10.1007/BF02479085.
  • Shui Z, Xuan D, Chen W, et al. Cementitious characteristics of hydrated cement paste subjected to various dehydration temperatures. Constr Build Mater. 2009;23(1):531–537. doi: 10.1016/j.conbuildmat.2007.10.016.
  • Wang J, Mu M, Liu Y. Recycled cement. Constr Build Mater. 2018;190:1124–1132. doi: 10.1016/j.conbuildmat.2018.09.181.
  • Shaaban IG, Shaheen YB, Elsayed EL, et al. Flexural characteristics of lightweight ferrocement beams with various types of core materials and mesh reinforcement. Constr Build Mater. 2018;171:802–816. doi: 10.1016/j.conbuildmat.2018.03.167.
  • Althoey F, Zaid O, Alsulamy S, et al. Experimental study on the properties of ultra-high-strength geopolymer concrete with polypropylene fibers and nano-silica. PLoS One. 2023;18(4):e0282435. doi: 10.1371/journal.pone.0282435.
  • Ali M, Li X, Chouw N. Experimental investigations on bond strength between coconut fibre and concrete. Mater Des. 2013;44:596–605. doi: 10.1016/j.matdes.2012.08.038.
  • Ho LS, Huynh T-P. Long-term mechanical properties and durability of high-strength concrete containing high-volume local fly ash as a partial cement substitution. Results Eng. 2023;18:101113. doi: 10.1016/j.rineng.2023.101113.
  • Hematibahar M, Hasanzadeh A, Vatin NI, et al. Influence of 3D-printed reinforcement on the mechanical and fracture characteristics of ultra high performance concrete. Results Eng. 2023;19:101365. doi: 10.1016/j.rineng.2023.101365.
  • Hosen MA, Shammas MI, Shill SK, et al. Investigation of structural characteristics of palm oil clinker based high-strength lightweight concrete comprising steel fibers. J Mater Res Technol. 2021;15:6736–6746. doi: 10.1016/j.jmrt.2021.11.105.
  • Huang Z, Padmaja K, Li S, et al. Mechanical properties and microstructure of ultra-lightweight cement composites with fly ash cenospheres after exposure to high temperatures. Constr Build Mater. 2018;164:760–774. doi: 10.1016/j.conbuildmat.2018.01.009.
  • Shafigh P, Muda ZC, Beddu S, et al. Thermo-mechanical efficiency of fibre-reinforced structural lightweight aggregate concrete. J Build Eng. 2022;60:105111. doi: 10.1016/j.jobe.2022.105111.
  • Ozawa M, Uchida S, Kamada T, et al. Study of mechanisms of explosive spalling in high-strength concrete at high temperatures using acoustic emission. Constr Build Mater. 2012;37:621–628. doi: 10.1016/j.conbuildmat.2012.06.070.
  • Prem PR, Murthy AR, Verma M. Theoretical modelling and acoustic emission monitoring of RC beams strengthened with UHPC. Constr Build Mater. 2018;158:670–682. doi: 10.1016/j.conbuildmat.2017.10.063.
  • Xiaobao ZUO, Wei S. Full process analysis of damage and failure of concrete subjected to external sulfate attack. Kuei Suan Jen Hsueh Pao/J Chinese Ceram Soc. 2009;37.
  • Meng C, Li W, Cai L, et al. Experimental research on durability of high-performance synthetic fibers reinforced concrete: resistance to sulfate attack and freezing-thawing. Constr Build Mater. 2020;262:120055. doi: 10.1016/j.conbuildmat.2020.120055.
  • Liu P, Chen Y, Yu Z, et al. Evolution of the dynamic properties of concrete in a sulfate environment. Constr Build Mater. 2020;245:118468. doi: 10.1016/j.conbuildmat.2020.118468.
  • Yang L, Fulin Y, Gaozhan Z. Synergistic effects of sustained loading and sulfate attack on the damage of UHPC based on lightweight aggregate. Constr Build Mater. 2023;374:130929. doi: 10.1016/j.conbuildmat.2023.130929.
  • Aslam M, Shafigh P, Jumaat MZ. Drying shrinkage behaviour of structural lightweight aggregate concrete containing blended oil palm bio-products. J Clean Prod. 2016;127:183–194. doi: 10.1016/j.jclepro.2016.03.165.
  • Feng S, Lyu J, Xiao H, et al. Application of cellulose fibre in ultra-high-performance concrete to mitigate autogenous shrinkage. J Sustain Cem Mater. 2023;12(7):842–855. doi: 10.1080/21650373.2022.2119618.
  • Zhuang Y, Zheng D, Ng Z, et al. Effect of lightweight aggregate type on early-age autogenous shrinkage of concrete. Constr Build Mater. 2016;120:373–381. doi: 10.1016/j.conbuildmat.2016.05.105.
  • Karaki A, Mohammad M, Masad E, et al. Theoretical and computational modeling of thermal properties of lightweight concrete. Case Stud Therm Eng. 2021;28:101683. doi: 10.1016/j.csite.2021.101683.
  • Li X, Bao Y, Wu L, et al. Thermal and mechanical properties of high-performance fiber-reinforced cementitious composites after exposure to high temperatures. Constr Build Mater. 2017;157:829–838. doi: 10.1016/j.conbuildmat.2017.09.125.
  • Ng S-C, Low K-S. Thermal conductivity of newspaper sandwiched aerated lightweight concrete panel. Energy Build. 2010;42(12):2452–2456. doi: 10.1016/j.enbuild.2010.08.026.
  • Zaid O, Ahmad J, Siddique MS, et al. Effect of incorporation of rice husk ash instead of cement on the performance of steel fibers reinforced concrete. Front Mater. 2021;8:14–28. doi: 10.3389/fmats.2021.665625.
  • Althoey F, Zaid O, Majdi A, et al. Effect of fly ash and waste glass powder as a fractional substitute on the performance of natural fibers reinforced concrete. Ain Shams Eng J. 2023;102247:102247. doi: 10.1016/j.asej.2023.102247.
  • Zaid O, Ahmad J, Siddique MS, et al. A step towards sustainable glass fiber reinforced concrete utilizing silica fume and waste coconut shell aggregate. Sci Rep. 2021;11(1):12822. doi: 10.1038/s41598-021-92228-6.
  • Aslam F, Zaid O, Althoey F, et al. Evaluating the influence of fly ash and waste glass on the characteristics of coconut fibers reinforced concrete. Struct Concr. 2023;24(2):2440–2459. doi: 10.1002/suco.202200183.
  • Luan C, Wang J, Zhou Z. Synergic effect of triethanolamine and C-S-H seeding on early hydration of the limestone calcined clay cement in UHPC. Constr Build Mater. 2023;400:132675. doi: 10.1016/j.conbuildmat.2023.132675.
  • Luan C, Wu Z, Han Z, et al. The effects of calcium content of fly ash on hydration and microstructure of ultra-high performance concrete (UHPC). J Clean Prod. 2023;415:137735. doi: 10.1016/j.jclepro.2023.137735.
  • Wang J, Yang S, Sun Z, et al. Properties of alkali-activated slag and fly ash blended sea sand concrete exposed to elevated temperature. J Sustain Cem Mater. 2023;0:1–26. doi: 10.1080/21650373.2023.2266815.
  • Zaid O, Mukhtar FM, M-García R, et al. Characteristics of high-performance steel fiber reinforced recycled aggregate concrete utilizing mineral filler. Case Stud Constr Mater. 2022;16:e00939. doi: 10.1016/j.cscm.2022.e00939.
  • Martínez-García R, Jagadesh P, Zaid O, et al. The present state of the use of waste wood ash as an Eco-Efficient construction material: a review. Materials (Basel). 2022;15(15):5349. doi: 10.3390/ma15155349.
  • Althoey F, Zaid O, de-Prado-Gil J, et al. Impact of sulfate activation of rice husk ash on the performance of high strength steel fiber reinforced recycled aggregate concrete. J Build Eng. 2022;54:104610. doi: 10.1016/j.jobe.2022.104610.
  • Zaid O, Althoey F, García RM, et al. A study on the strength and durability characteristics of fiber-reinforced recycled aggregate concrete modified with supplementary cementitious material. Heliyon. 2023;9(9):e19978. doi: 10.1016/j.heliyon.2023.e19978.
  • Liu Y, Jing R, Yan P. Improving environmental efficiency of ultra-high-performance concrete (UHPC) through appropriate application of ultrafine quartz powder. J Sustain Cem Mater. 2023;12(8):941–950. doi: 10.1080/21650373.2022.2139779.
  • Saleh S, Li Y-L, Hamed E, et al. Workability, strength, and shrinkage of ultra-high-performance seawater, sea sand concrete with different OPC replacement ratios. J Sustain Cem Mater. 2023;12(3):271–291. doi: 10.1080/21650373.2022.2050831.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.