156
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Comparison of stearic acid and oleic acid for shrinkage-mitigating of alkali-activated slag composites

, , , , , , , , , & show all

References

  • Tian B, Ma W, Li X, et al. Effect of ceramic polishing waste on the properties of alkali-activated slag pastes: shrinkage, hydration and mechanical property. J Buil Eng. 2023;63:105448. doi: 10.1016/j.jobe.2022.105448.
  • McLellan BC, Williams RP, Lay J, et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. J Cleaner Prod. 2011;19(9–10):1080–1090. doi: 10.1016/j.jclepro.2011.02.010.
  • Vázquez-Rowe I, Ziegler-Rodriguez K, Laso J, et al. Production of cement in Peru: understanding carbon-related environmental impacts and their policy implications. Resour Conserv Recycl. 2019;142:283–292. doi: 10.1016/j.resconrec.2018.12.017.
  • Huo Y, Huang J, Lu D, et al. Durability of alkali-activated slag concrete incorporating silica fume and rice husk ash. J Buil Eng. 2023;78:107637. doi: 10.1016/j.jobe.2023.107637.
  • Zhang Y, Lei L, Plank J, et al. Boosting the performance of low-carbon alkali activated slag with APEG PCEs: a comparison with ordinary Portland cement. J Sustain Cement Based Mater. 2023;12(11):1347–1359. doi: 10.1080/21650373.2023.2219253.
  • Huo Y, Lu D, Han X, et al. The role of admixed CaO in a sulphoaluminate cement system under winter environments. J Buil Eng. 2023;78:107638. doi: 10.1016/j.jobe.2023.107638.
  • Zito SV, Cordoba GP, Irassar EF, et al. Durability of eco-friendly blended cements incorporating ceramic waste from different sources. J Sustain Cement Based Mater. 2023;12(1):13–23. doi: 10.1080/21650373.2021.2010242.
  • Demircan RK, Kaplan G, Çelik DN. High temperature resistant restoration mortar with fly ash and GGBFS. J Sustain Cement Based Mater. 2022;11(6):418–438. doi: 10.1080/21650373.2021.1992682.
  • Huo Y, Huang J, Han X, et al. Mass GGBFS concrete mixed with recycled aggregates as Alkali-Active substances: workability, temperature history and strength. Materials. 2023;16(16):5632. doi: 10.3390/ma16165632.
  • Huo Y, Sun H, Lu D, et al. Mechanical properties of concrete at low and ultra-low temperatures- a review. J Infrastruct Preserv Resil. 2022;3(1):20. doi: 10.1186/s43065-022-00063-4.
  • Bernal SA, Rodríguez ED, Mejía de Gutiérrez R, et al. Performance of alkali-activated slag mortars exposed to acids. J Sustain Cement Based Mater. 2012;1(3):138–151. doi: 10.1080/21650373.2012.747235.
  • Al Makhadmeh W, Soliman A. Effect of activator nature on property development of alkali-activated slag binders. J Sustain Cement Based Mater. 2021;10(4):240–256. doi: 10.1080/21650373.2020.1833256.
  • Abdalqader AF, Jin F, Al-Tabbaa A. Development of greener alkali-activated cement: utilisation of sodium carbonate for activating slag and fly ash mixtures. J Cleaner Prod. 2016;113:66–75. doi: 10.1016/j.jclepro.2015.12.010.
  • Lu D, Shi X, Zhong J. Interfacial bonding between graphene oxide coated carbon nanotube fiber and cement paste matrix. Cem Concr Compos. 2022;134:104802. doi: 10.1016/j.cemconcomp.2022.104802.
  • Bernal SA, Provis JL. Durability of alkali‐activated materials: progress and perspectives. J. Am. Ceram. Soc. 2014;97(4):997–1008. doi: 10.1111/jace.12831.
  • Ortega-Zavala DE, Santana-Carrillo JL, Burciaga-Díaz O, et al. An initial study on alkali activated limestone binders. Cem Concr Res. 2019;120:267–278. doi: 10.1016/j.cemconres.2019.04.002.
  • Fernández-Jiménez A, Palomo J, Puertas F. Alkali-activated slag mortars: mechanical strength behaviour. Cem Concr Res. 1999;29(8):1313–1321. doi: 10.1016/S0008-8846(99)00154-4.
  • Bakharev T, Sanjayan JG, Cheng Y-B. Alkali activation of Australian slag cements. Cem Concr Res. 1999;29(1):113–120. doi: 10.1016/S0008-8846(98)00170-7.
  • Lu D, Wang D, Zhong J. Highly conductive and sensitive piezoresistive cement mortar with graphene coated aggregates and carbon fiber. Cem Concr Compos. 2022;134:104731. doi: 10.1016/j.cemconcomp.2022.104731.
  • Bakharev T, Sanjayan JG, Cheng Y-B. Sulfate attack on alkali-activated slag concrete. Cem Concr Res. 2002;32(2):211–216. doi: 10.1016/S0008-8846(01)00659-7.
  • Fu Q, Bu M, Zhang Z, et al. Hydration characteristics and microstructure of Alkali-Activated slag concrete: a review. Engineering. 2023;20:162–179. doi: 10.1016/j.eng.2021.07.026.
  • Kumarappa DB, Peethamparan S. Stress-strain characteristics and brittleness index of alkali-activated slag and class C fly ash mortars. J Buil Eng. 2020;32:101595. doi: 10.1016/j.jobe.2020.101595.
  • Sadeghian G, Behfarnia K, Teymouri M. Drying shrinkage of one-part alkali-activated slag concrete. J Buil Eng. 2022;51:104263. doi: 10.1016/j.jobe.2022.104263.
  • Burciaga-Díaz O, Magallanes-Rivera RX, Escalante-García JI. Alkali-activated slag-metakaolin pastes: strength, structural, and microstructural characterization. J Sustain Cement Based Mater. 2013;2(2):111–127. doi: 10.1080/21650373.2013.801799.
  • Lu D, Shi X, Zhong J. Interfacial nano-engineering by graphene oxide to enable better utilization of silica fume in cementitious composite. J Cleaner Prod. 2022;354:131381. doi: 10.1016/j.jclepro.2022.131381.
  • Neto AAM, Cincotto MA, Repette W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem Concr Res. 2008;38(4):565–574. doi: 10.1016/j.cemconres.2007.11.002.
  • Li N, Zhang Z, Shi C, et al. Some progresses in the challenges for geopolymer. In IOP conference series: materials science and engineering. IOP Publishing Ltd.; 2018. p. 022003. doi: 10.1088/1757-899X/431/2/022003.
  • Li N, Shi C, Zhang Z, et al. A review on mixture design methods for geopolymer concrete. Compos Part B Eng. 2019;178:107490. doi: 10.1016/j.compositesb.2019.107490.
  • Mao Y, Liu J, Shi C. Autogenous shrinkage and drying shrinkage of recycled aggregate concrete: a review. J Cleaner Prod. 2021;295:126435. doi: 10.1016/j.jclepro.2021.126435.
  • Ye H, Cartwright C, Rajabipour F, et al. Understanding the drying shrinkage performance of alkali-activated slag mortars. Cem Concr Compos. 2017;76:13–24. doi: 10.1016/j.cemconcomp.2016.11.010.
  • Lu D, Huo Y, Jiang Z, et al. Carbon nanotube polymer nanocomposites coated aggregate enabled highly conductive concrete for structural health monitoring. Carbon. 2023;206:340–350. doi: 10.1016/j.carbon.2023.02.043.
  • Wang G, Ma Y. Drying shrinkage of alkali-activated fly ash/slag blended system. J Sustain Cement Based Mater. 2018;7(4):203–213. doi: 10.1080/21650373.2018.1471424.
  • Ma J, Dehn F. Shrinkage and creep behavior of an alkali‐activated slag concrete. Struct Concr. 2017;18(5):801–810. doi: 10.1002/suco.201600147.
  • Huo Y, Sun H, Chen Z, et al. Mechanical properties and its reliability prediction of engineered/strain-hardening cementitious composites (ECC/SHCC) with different moisture contents at negative temperatures. Cem Concr Compos. 2022;134:104812. doi: 10.1016/j.cemconcomp.2022.104812.
  • Huo Y, Lu D, Wang Z, et al. Bending behavior of strain hardening cementitious composites based on the combined fiber-interface constitutive model. Comp Struct. 2023;281:107017. doi: 10.1016/j.compstruc.2023.107017.
  • Lu D, Jiang X, Leng Z, et al. Electrically conductive asphalt concrete for smart and sustainable pavement construction: a review. Constr Build Mater. 2023;406:133433. doi: 10.1016/j.conbuildmat.2023.133433.
  • Lu D, Jiang X, Leng Z, et al. Dual responsive microwave heating-healing system in asphalt concrete incorporating coal gangue and functional aggregate. J Cleaner Prod. 2023;422:138648. doi: 10.1016/j.jclepro.2023.138648.
  • Yang T, Zhu H, Zhang Z. Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin-based geopolymer pastes and mortars. Constr Build Mater. 2017;153:284–293. doi: 10.1016/j.conbuildmat.2017.05.067.
  • Han X, Yan J, Liu M, et al. Experimental study on large-scale 3D printed concrete walls under axial compression. Autom Constr. 2022;133:103993. doi: 10.1016/j.autcon.2021.103993.
  • Lee N, Jang JG, Lee H-K. Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cem Concr Compos. 2014;53:239–248. doi: 10.1016/j.cemconcomp.2014.07.007.
  • Yao X, Yang T, Zhang Z. Compressive strength development and shrinkage of alkali-activated fly ash–slag blends associated with efflorescence. Mater Struct. 2016;49(7):2907–2918. doi: 10.1617/s11527-015-0694-3.
  • Lu D, Sheng Z, Yan B, et al. Rheological behavior of fresh cement composites with graphene oxide–coated silica fume. J. Mater. Civ. Eng. 2023;35(10):04023341. doi: 10.1061/JMCEE7.MTENG-15428.
  • Lu D, Jiang X, Tan Z, et al. Enhancing sustainability in pavement engineering: a -state-of-the-art review of cement asphalt emulsion mixtures. Cleaner Mater. 2023;9:100204. doi: 10.1016/j.clema.2023.100204.
  • L'Hôpital E, Lothenbach B, Scrivener K, et al. Alkali uptake in calcium alumina silicate hydrate (CASH). Cem Concr Res. 2016;85:122–136. doi: 10.1016/j.cemconres.2016.03.009.
  • Mastali M, Kinnunen P, Dalvand A, et al. Drying shrinkage in alkali-activated binders–a critical review. Constr Build Mater. 2018;190:533–550. doi: 10.1016/j.conbuildmat.2018.09.125.
  • Collins F, Sanjayan JG. Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate. Cem Concr Res. 1999;29(4):607–610. doi: 10.1016/S0008-8846(98)00203-8.
  • Collins F, Sanjayan JG. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cem Concr Res. 2000;30(9):1401–1406. doi: 10.1016/S0008-8846(00)00327-6.
  • Hajimohammadi A, Ngo T, Kashani A. Sustainable one-part geopolymer foams with glass fines versus sand as aggregates. Constr Build Mater. 2018;171:223–231. doi: 10.1016/j.conbuildmat.2018.03.120.
  • Matalkah F, Salem T, Shaafaey M, et al. Drying shrinkage of alkali activated binders cured at room temperature. Constr Build Mater. 2019;201:563–570. doi: 10.1016/j.conbuildmat.2018.12.223.
  • Lu D, Wang D, Wang Y, et al. Nano-engineering the interfacial transition zone between recycled concrete aggregates and fresh paste with graphene oxide. Constr Build Mater. 2023;384:131244. doi: 10.1016/j.conbuildmat.2023.131244.
  • Lu D, Leng Z, Lu G, et al. A critical review of carbon materials engineered electrically conductive cement concrete and its potential applications. Int J Smart Nano Mater. 2023;14(2):189–215. doi: 10.1080/19475411.2023.2199703.
  • Gong J, Ma Y, Wang Y, et al. Assessment of the performance of alkali-activated slag/fly ash using liquid and solid activators: early-age properties and efflorescence. J Sustain Cement Based Mater. 2023;12:1–11. doi: 10.1080/21650373.2023.2266837.
  • Zhu X, Kang X, Deng J, et al. Chemical and physical effects of high-volume limestone powder on sodium silicate-activated slag cement (AASC). Constr Build Mater. 2021;292:123257. doi: 10.1016/j.conbuildmat.2021.123257.
  • Xiang J, Liu L, Cui X, et al. Effect of limestone on rheological, shrinkage and mechanical properties of alkali–activated slag/fly ash grouting materials. Constr Build Mater. 2018;191:1285–1292. doi: 10.1016/j.conbuildmat.2018.09.209.
  • Atiş CD, Bilim C, Çelik Ö, et al. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater. 2009;23(1):548–555. doi: 10.1016/j.conbuildmat.2007.10.011.
  • Jin F, Al-Tabbaa A. Strength and drying shrinkage of slag paste activated by sodium carbonate and reactive MgO. Constr Build Mater. 2015;81:58–65. doi: 10.1016/j.conbuildmat.2015.01.082.
  • Ou Z, Feng R, Li F, et al. Development of drying shrinkage model for alkali-activated slag concrete. Constr Build Mater. 2022;323:126556. doi: 10.1016/j.conbuildmat.2022.126556.
  • Zhang J, Shi C, Zhang Z, et al. Durability of alkali-activated materials in aggressive environments: a review on recent studies. Constr Build Mater. 2017;152:598–613. doi: 10.1016/j.conbuildmat.2017.07.027.
  • Chen W, Li B, Wang J, et al. Effects of alkali dosage and silicate modulus on autogenous shrinkage of alkali-activated slag cement paste. Cem Concr Res. 2021;141:106322. doi: 10.1016/j.cemconres.2020.106322.
  • Xiang J, He Y, Liu L, et al. Exothermic behavior and drying shrinkage of alkali-activated slag concrete by low temperature-preparation method. Constr Build Mater. 2020;262:120056. doi: 10.1016/j.conbuildmat.2020.120056.
  • Qu ZY, Gauvin F, Wang FZ, et al. Effect of hydrophobicity on autogenous shrinkage and carbonation of alkali activated slag. Constr Build Mater. 2020;264:120665. doi: 10.1016/j.conbuildmat.2020.120665.
  • Huo Y, Liu T, Lu D, et al. Dynamic tensile properties of steel fiber reinforced polyethylene fiber-engineered/strain-hardening cementitious composites (PE-ECC/SHCC) at high strain rate. Cem Concr Compos. 2023;143:105234. doi: 10.1016/j.cemconcomp.2023.105234.
  • Le D-H, Sheen Y-N, Lam MN-T. Potential utilization of sugarcane bagasse ash for developing alkali-activated materials. J Sustain Cement Based Mater. 2022;11(3):199–209. doi: 10.1080/21650373.2021.1920513.
  • Huang J, Yan J, Liu K, et al. Influence of cooking oil on the mitigation of autogenous shrinkage of Alkali-Activated slag concrete. Materials (Basel). 2020;13(21):4907. doi: 10.3390/ma13214907.
  • B.S Institute. Methods of testing cement-determination of setting time and soundness. EN. 1995;196–3.
  • Safety Standards. Methods Of Testing Cement - Part 1: determination Of Strength, 2016.
  • A.S.f. Testing, M.C.C.-o. Cement. Standard test method for drying shrinkage of mortar containing hydraulic cement, ASTM International. 2010.
  • Faguang L, Junming R, Wei D, et al. Introduction of Revised Standard for Test Methods of Long-term Performance and Durability of Ordinary Concrete GB/T50082-2009, Construction Technology. 2010.
  • Huo Y, Hu S, Lu D, et al. Understanding the roles of Li2CO3 in a sulphoaluminate cement system at negative temperatures. Case Stud Constr Mater. 2023;19:e02574. doi: 10.1016/j.cscm.2023.e02574.
  • Lanzón M, Garrido A, García-Ruiz PA. Stabilization of sodium oleate as calcium oleate in cement-based mortars made with limestone fillers. Constr Build Mater. 2011;25(2):1001–1008. doi: 10.1016/j.conbuildmat.2010.06.079.
  • Vikan H, Justnes H. Influence of vegetable oils on durability and pore structure of mortars ACI Symposium Publication 234.
  • Silva BA, Ferreira Pinto AP, Gomes A, et al. Comparative analysis of the behaviour of integral water-repellents on lime mortars. Constr Build Mater. 2020;261:120344. doi: 10.1016/j.conbuildmat.2020.120344.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.