127
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Utilization of ground granulated blast-furnace slag and electrolytic manganese residue as a low-carbon cementitious material

, , , , , & show all

References

  • Xu G, Xue D, Rehman H. Dynamic scenario analysis of CO2 emission in China’s cement industry by 2100 under the context of cutting overcapacity. Mitig Adapt Strateg Glob Chang. 2022;27:53.
  • Yan Z, Li H, Wang M, et al. The compressive strength, reaction kinetics and phases evolution of CO2-cured cement pastes at low temperatures. J Sustain Cem-Based Mater. 2023; 12(12):1509–1518, doi: 10.1080/21650373.2023.2241057.
  • Wen Z, Chen M, Meng F. Evaluation of energy saving potential in China’s cement industry using the Asian-Pacific integrated model and the technology promotion policy analysis. Energy Policy. 2015;77:227–237. doi: 10.1016/j.enpol.2014.11.030.
  • Emad B, Ezzatollah S, Muhammad IR. Challenges against CO2 abatement strategies in cement industry: a review. J Environ Sci. 2021;104:84–101.
  • Cosentino I, Liendo F, Arduino M, et al. Nano CaCO3 particles in cement mortars towards developing a circular economy in the cement industry. Procedia Struct Integr. 2020;26:155–165. doi: 10.1016/j.prostr.2020.06.019.
  • Andrew RM. Global CO2 emissions from cement production. Earth Syst Sci Data. 2018;10(4):2213–2239. doi: 10.5194/essd-10-2213-2018.
  • Lang L, Chen B, Pan YJ. Engineering properties evaluation of unfired sludge bricks solidified by cement-fly ash-lime admixed nano-SiO2 under compaction forming technology. Constr Build Mater. 2020;259:119879. doi: 10.1016/j.conbuildmat.2020.119879.
  • Menchaca-Ballinas LE, Martinez-Lopez R, Escalante-Garcia JI. Compressive strength and microstructure of alkali-activated waste glass-slag cements. J Sustain Cem-Based Mater. 2023;12(4):381–392. doi: 10.1080/21650373.2022.2066029.
  • Wu M, Zhang YS, Jia YT, et al. Influence of sodium hydroxide on the performance and hydration of lime-based low carbon cementitious materials. Constr Build Mater. 2019;200:604–615. doi: 10.1016/j.conbuildmat.2018.12.102.
  • Fernando S, Nasvi MC, Gunasekara C, et al. Systematic review on alkali-activated binders blended with rice husk ash. J Mater Civil Eng. 2021;33:04021229.
  • Zheng D, Cui H, Tang W, et al. Influence and mechanisms of active silica in solid waste on hydration of tricalcium aluminate in the resulting composite cement. Mater Today Commun. 2021;27:102262. doi: 10.1016/j.mtcomm.2021.102262.
  • Liu X, Zhao X, Yin HW, et al. Intermediate-calcium based cementitious materials prepared by MSWI fly ash and other solid wastes: hydration characteristics and heavy metals solidification behavior. J Hazard Mater. 2018;349:262–271. doi: 10.1016/j.jhazmat.2017.12.072.
  • El-Hassan H, Ismail N. Effect of process parameters on the performance of fly ash/GGBS blended geopolymer composites. J Sustain Cem-Based Mater. 2018;7(2):122–140. doi: 10.1080/21650373.2017.1411296.
  • Zhang W, Hao X, Wei C, et al. Synergistic enhancement of converter steelmaking slag, blast furnace slag, Bayer red mud in cementitious materials: strength, phase composition, and microstructure. J Build Eng. 2022;60:105177. doi: 10.1016/j.jobe.2022.105177.
  • Sun Z, Young C. Bleeding of SCC pastes with fly ash and GGBFS replacement. J Sustain Cem-Based Mater. 2014;3(3-4):220–229. doi: 10.1080/21650373.2013.876373.
  • Cabeza LF, Barreneche C, Miró L, et al. Low carbon and low embodied energy materials in buildings: a review. Renew Sust Energ Rev. 2013;23:536–542. doi: 10.1016/j.rser.2013.03.017.
  • Huang Y, Xu G, Cheng H, et al. An overview of utilization of steel slag. Procedia Environ Sci. 2012;16:791–801. doi: 10.1016/j.proenv.2012.10.108.
  • Khanday SA, Hussain M, Das AK. Stabilization of indian peat using alkali-activated ground granulated blast furnace slag. Bull Eng Geol Environ. 2021;80(7):5539–5551. doi: 10.1007/s10064-021-02248-9.
  • Zhang N, Yu H, Tan Y, et al. Effects of fly ash and slag on the properties of magnesium oxysulfate cement. Emerg Mater Res. 2019;8(3):472–482. doi: 10.1680/jemmr.18.00172.
  • Choi J, Song K, Song J, et al. Composite properties of high-strength polyethylene fiber-reinforced cement and cementless composites. Compos Struct. 2016;138:116–121. doi: 10.1016/j.compstruct.2015.11.046.
  • Guo Z, Wang Y, Hou P, et al. Comparison study on the sulfate attack resistivity of cement-based materials modified with nanoSiO2 and conventional SCMs: mechanical strength and volume stability. Constr Build Mater. 2019;211:556–570. doi: 10.1016/j.conbuildmat.2019.03.235.
  • Zhang Z, Wang Q, Chen H, et al. Influence of the initial moist curing time on the sulfate attack resistance of concretes with different binders. Constr Build Mater. 2017;144:541–551. doi: 10.1016/j.conbuildmat.2017.03.235.
  • Mohames O. Durability and compressive strength of high cement replacement ratio self-consolidating concrete. Buildings (Basel). 2018;8(11):153.
  • Liu T, Yu Q, Brouwers HJH, et al. Utilization of waste glass in alkali activated slag/fly ash blends: reaction process, microstructure, and chloride diffusion behavior. J Sustain Cem-Based Mater. 2023;12(5):516–526. doi: 10.1080/21650373.2022.2082577.
  • Qin L, Gao X, Chen T. Influence of mineral admixtures on carbonation curing of cement paste. Constr Build Mater. 2019;212:653–662. doi: 10.1016/j.conbuildmat.2019.04.033.
  • Unluer C, Al-Tabbaa A. The role of brucite, ground granulated blastfurnace slag, and magnesium silicates in the carbonation and performance of MgO cements. Constr Build Mater. 2015;94:629–643. doi: 10.1016/j.conbuildmat.2015.07.105.
  • Korde C, Cruickshank M, West RP. Activation of slag: a comparative study of cement, lime, calcium sulfate, GGBS fineness and temperature. Mag Concrete Res. 2021;73(1):15–31. doi: 10.1680/jmacr.19.00119.
  • Wei M, Li Y, Yu B, et al. Low-carbon treatment of zinc contaminated iron tailings using high-calcium geopolymer: influence of wet-dry cycle coupled with acid attack. J Clean Prod. 2022;338:130636. doi: 10.1016/j.jclepro.2022.130636.
  • Haha MB, Lothenbach B, Saoût GL, et al. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—part I: effect of MgO. Cement Concrete Res. 2011;41(9):955–963. doi: 10.1016/j.cemconres.2011.05.002.
  • Mun K, So S, Soh YS. The effect of slaked lime, anhydrous gypsum and limestone powder on properties of blast furnace slag cement mortar and concrete. Constr Build Mater. 2007;21(7):1576–1582. doi: 10.1016/j.conbuildmat.2005.09.010.
  • Han F, Yan P. Hydration characteristics of slag-blended cement at different temperatures. J Sustain Cem-Based Mater. 2015;4(1):34–43. doi: 10.1080/21650373.2014.959089.
  • Nuno C, João DC, Jhonathan FR, et al. Application of electric arc furnace slag as an alternative precursor to blast furnace slag in alkaline cements. J Sustain Cem-Based Mater. 2023;12(9):1081–1093.
  • O’Rourke BD, McNally C, Richardson MG. Development of calcium sulfate - ggbs - Portland cement binders. Constr Build Mater. 2009;23(1):340–346. doi: 10.1016/j.conbuildmat.2007.11.016.
  • Adu-Amankwah S, Black L, Skocek J, et al. Effect of sulfate additions on hydration and performance of ternary slag-limestone composite cements. Constr Build Mater. 2018;164:451–462. doi: 10.1016/j.conbuildmat.2017.12.165.
  • Wang J, Peng B, Chai L, et al. Preparation of electrolytic manganese residue–ground granulated blastfurnace slag cement. Power Technol. 2013;241:12–18. doi: 10.1016/j.powtec.2013.03.003.
  • Wang P, Liu DY. Preparation of baking-free brick from manganese residue and its mechanical properties. J Nanomater. 2013;2013:1–5. doi: 10.1155/2013/452854.
  • Wang F, Long G, Bai M, et al. Cleaner and safer disposal of electrolytic manganese residues in cement-based materials using direct electric curing. J Clean Prod. 2022;356:131842. doi: 10.1016/j.jclepro.2022.131842.
  • Zhang Y, Liu X, Xu Y, et al. Preparation of road base material by utilizing electrolytic manganese residue based on Si-Al structure: mechanical properties and Mn2+ stabilization/solidification characterization. J Hazard Mater. 2020;390:122188. doi: 10.1016/j.jhazmat.2020.122188.
  • Zhang Y, Liu X, Xu Y, et al. Synergic effects of electrolytic manganese residue-red mud-carbide slag on the road base strength and durability properties. Constr Build Mater. 2019;220:364–374. doi: 10.1016/j.conbuildmat.2019.06.009.
  • Li J, Sun P, Li J, et al. Synthesis of electrolytic manganese residue-fly ash based geopolymers with high compressive strength. Constr Build Mater. 2020;248:118489. doi: 10.1016/j.conbuildmat.2020.118489.
  • Li J, Lv Y, Jiao X, et al. Electrolytic manganese residue based autoclaved bricks with Ca(OH)2 and thermal-mechanical activated K-feldspar additions. Constr Build Mater. 2020;230:116848. doi: 10.1016/j.conbuildmat.2019.116848.
  • Xu Y, Liu X, Zhang Y, et al. Investigation on sulfate activation of electrolytic manganese residue on early activity of blast furnace slag in cement-based cementitious material. Constr Build Mater. 2019;229:116831. doi: 10.1016/j.conbuildmat.2019.116831.
  • Hou P, Qian J, Wang Z, et al. Production of quasi-sulfoaluminate cementitious materials with electrolytic manganese residue. Cement Concrete Res. 2012;34(2):248–254. doi: 10.1016/j.cemconcomp.2011.10.003.
  • Qian J, Hou P, Wang Z, et al. Crystallization characteristic of glass-ceramic made from electrolytic manganese residue. J Wuhan Univ Technol-Mater Sci Ed. 2012;27(1):45–49. doi: 10.1007/s11595-012-0404-8.
  • Wu F, Li X, Zhong H, et al. Utilization of electrolytic manganese residues in production of porous ceramics. Int J Appl Ceram Technol. 2016;13(3):511–521. doi: 10.1111/ijac.12502.
  • Lan J, Sun Y, Tian H, et al. Electrolytic manganese residue-based cement for manganese ore pit backfilling: performance and mechanism. J Hazard Mater. 2021;411:124941. doi: 10.1016/j.jhazmat.2020.124941.
  • ASTM D4219-08. Standard test method for unconfined compressive strength of chemical grouted soils. West Conshohocken: ASTM International. 2008.
  • HJ 557-2010. Solid waste-extraction procedure for leaching toxicity—horizontal vibration method. National Standard of the People’s Republic of China; Beijing: China Environmental Press, 2010.
  • HJ/T 299-2007. Solid waste-extraction procedure for leaching toxicity—sulphuric acid & nitric acid method. National Standard of the People’s Republic of China; Beijing: China Environmental Press, 2007.
  • GB 8978-1996. Integrated wastewater discharge standard. National Standard of the People’s Republic of China; Beijing: China Environmental Press, 1996.
  • GB 3838-2002. Environmental quality standards for surface water. National Standard of the People’s Republic of China; Beijing: China Environmental Press, 2002.
  • Zhao Y, Qiu J, M Z, et al. Effect of superfine blast furnace slags on the binary cement containing high-volume fly ash. Power Technol. 2020;375:539–548.
  • Liu Z, Chen W, Zhang Y, et al. A three-dimensional multi-scale method to simulate the ion transport behavior of cement-based materials. Constr Build Mater. 2016;120:494–503. doi: 10.1016/j.conbuildmat.2016.05.121.
  • Zhang Y, Liu X, Xu Y, et al. Preparation and characterization of cement treated road base material utilizing electrolytic manganese residue. J Clean Prod. 2019;232:980–992. doi: 10.1016/j.jclepro.2019.05.352.
  • Chang Z, Long G, Xie Y, et al. Recycling sewage sludge ash and limestone for sustainable cementitious material production. J Build Eng. 2022;49:104035. doi: 10.1016/j.jobe.2022.104035.
  • Heede PV, Belie ND. Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: literature review and theoretical calculations. Cement Concrete Res. 2012;34:431–442.
  • Hossain MU, Poon CS, Lo IMC, et al. Comparative LCA on using waste materials in the cement industry: a Hong Kong case study. Resour Conserv Recy. 2017;120:199–208. doi: 10.1016/j.resconrec.2016.12.012.
  • He D, Shu J, Zeng X, et al. Synergistic solidification/stabilization of electrolytic manganese residue and carbide slag. Sci Total Environ. 2022;810:152175. doi: 10.1016/j.scitotenv.2021.152175.
  • Chiaia B, Fantilli AP, Guerini A, et al. Eco-mechanical index for structural concrete. Constr Build Mater. 2014;67:386–392. doi: 10.1016/j.conbuildmat.2013.12.090.
  • Yang Y, Zhao T, Jiao H, et al. Potential effect of porosity evolution of cemented paste backfill on selective solidification of heavy metal ions. IJERPH. 2020;17(3):814. doi: 10.3390/ijerph17030814.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.