100
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of self-cleaning performance of TiO2-intermixed and TiO2-coated cement mortars under natural sunlight

&

References

  • Chen J, Poon CS. Photocatalytic construction and building materials: from fundamentals to applications. BuildEnviron. 2009;44(9):1899–1906. doi: 10.1016/j.buildenv.2009.01.002.
  • Zhang R, Cheng X, Hou P, et al. Influences of nano-TiO2 on the properties of cement-based materials: hydration and drying shrinkage. Constr Build Mater. 2015;81:35–41. doi: 10.1016/j.conbuildmat.2015.02.003.
  • Kang X, Liu S, Dai Z, et al. Titanium dioxide: from engineering to applications. Catalysts. 2019;9(2):191. doi: 10.3390/catal9020191.
  • Pelaez M, Nolan NT, Pillai SC, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ. 2012;125:331–349. doi: 10.1016/j.apcatb.2012.05.036.
  • Allen NS, Mahdjoub N, Vishnyakov V, et al. The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2). Polym Degrad Stab. 2018;150:31–36. doi: 10.1016/j.polymdegradstab.2018.02.008.
  • Luo G, Liu H, Li W, et al. Automobile exhaust removal performance of pervious concrete with nano TiO2 under photocatalysis. Nanomaterials. 2020;10(10):2088. doi: 10.3390/nano10102088.
  • Kujawa W, Didyk-Mucha A, Olewnik-Kruszkowska E, et al. Synergistic effect of combined polymorphs anatase-rutile nano-modified lightweight concrete on photocatalytic reduction of NOx, self-cleaning performance, and antimicrobial properties. Buildings. 2023;13(7):1736. doi: 10.3390/buildings13071736.
  • Calia A, Lettieri M, Masieri M, et al. Limestones coated with photocatalytic TiO2 to enhance building surface with self-cleaning and depolluting abilities. J Clean Prod. 2017;165:1036–1047. doi: 10.1016/j.jclepro.2017.07.193.
  • Maiti M, Sarkar M, Maiti S, et al. Modification of geopolymer with size controlled TiO2 nanoparticle for enhanced durability and catalytic dye degradation under UV light. J Clean Prod. 2020;255:120183. doi: 10.1016/j.jclepro.2020.120183.
  • Moro C, Francioso V, Lopez-Arias M, et al. Modification of self-cleaning activity on cement pastes containing nano-TiO2 due to CO2 curing. Constr Build Mater. 2022;330:127185. doi: 10.1016/j.conbuildmat.2022.127185.
  • Liu Q, Jiang Q, Huang M, et al. The fresh and hardened properties of 3D printing cement-base materials with self-cleaning nano-TiO2: an exploratory study. J Clean Prod. 2022;379:134804. doi: 10.1016/j.jclepro.2022.134804.
  • Petronella F, Pagliarulo A, Truppi A, et al. TiO2nanocrystal based coatings for the protection of architectural stone: the effect of solvents in the spray-coating application for a self-cleaning surfaces. Coatings. 2018;8(10):356. doi: 10.3390/coatings8100356.
  • Shen W, Zhang C, Li Q, et al. Preparation of titanium dioxide nano particle modified photocatalytic self-cleaning concrete. J Clean Prod. 2015;87:762–765. doi: 10.1016/j.jclepro.2014.10.014.
  • Wang Z, Gauvin F, Feng P, et al. Self-cleaning and air purification performance of Portland cement paste with low dosages of nanodispersed TiO2 coatings. Constr Build Mater. 2020;263:120558. doi: 10.1016/j.conbuildmat.2020.120558.
  • Constantino JC, Garcia DC, Palhares HG, et al. Development of functional TiO2 coatings deposited on cementitious materials. Constr Build Mater. 2020;250:118732. doi: 10.1016/j.conbuildmat.2020.118732.
  • Werle AP, De Souza ML, Loh K, et al. The performance of a self-cleaning cool cementitious surface. Energy Build. 2016;114:200–205. doi: 10.1016/j.enbuild.2015.06.025.
  • Lucas SS, Ferreira VM, De Aguiar JB. Incorporation of titanium dioxide nanoparticles in mortars—influence of microstructure in the hardened state properties and photocatalytic activity. Cem Concr Res. 2013;43:112–120. doi: 10.1016/j.cemconres.2012.09.007.
  • Diamanti MV, Ormellese M, Pedeferri M. Characterization of photocatalytic and superhydrophilic properties of mortars containing titanium dioxide. Cem Concr Res. 2008;38(11):1349–1353. doi: 10.1016/j.cemconres.2008.07.003.
  • Diamanti MV, Paolini R, Rossini M, et al. Long term self-cleaning and photocatalytic performance of anatase added mortars exposed to the urban environment. Constr Build Mater. 2015;96:270–278. doi: 10.1016/j.conbuildmat.2015.08.028.
  • Wang Z, Yu Q, Gauvin F, et al. Nanodispersed TiO2 hydrosol modified Portland cement paste: the underlying role of hydration on self-cleaning mechanisms. Cem Concr Res. 2020;136:106156. doi: 10.1016/j.cemconres.2020.106156.
  • Folli A, Pade C, Hansen TB, et al. TiO2 photocatalysis in cementitious systems: insights into self-cleaning and depollution chemistry. Cem Concr Res. 2012;42(3):539–548. doi: 10.1016/j.cemconres.2011.12.001.
  • Calvo JG, Carballosa P, Castillo A, et al. Expansive concretes with photocatalytic activity for pavements: enhanced performance and modifications of the expansive hydrates composition. Constr Build Mater. 2019;218:394–403. doi: 10.1016/j.conbuildmat.2019.05.135.
  • Cerro-Prada E, García-Salgado S, Quijano MÁ, et al. Controlled synthesis and microstructural properties of sol-gel TiO2 nanoparticles for photocatalytic cement composites. Nanomater. 2018;9(1):26. doi: 10.3390/nano9010026.
  • Pozo-Antonio JS, Dionísio A. Self-cleaning property of mortars with TiO2 addition using real diesel exhaust soot. J Clean Prod. 2017;161:850–859. doi: 10.1016/j.jclepro.2017.05.202.
  • Folli A, Jakobsen UH, Guerrini GL, et al. Rhodamine B discolouration on TiO2 in the cement environment: a look at fundamental aspects of the self-cleaning effect in concretes. Adv Mater Technol. 2009;12(1):126–133. doi: 10.1515/jaots-2009-0116.
  • Folli A, Pochard I, Nonat A, et al. Engineering photocatalytic cements: understanding TiO2 surface chemistry to control and modulate photocatalytic performances. J Am Ceram. 2010;93(10):3360–3369. doi: 10.1111/j.1551-2916.2010.03838.x.
  • Wang Z, Yu Q, Feng P, et al. Variation of self-cleaning performance of nano-TiO2 modified mortar caused by carbonation: from hydrates to carbonates. Cem Concr Res. 2022;158:106852. doi: 10.1016/j.cemconres.2022.106852.
  • Sanalkumar KUA, Yang EH. Self-cleaning performance of nano-TiO2 modified metakaolin-based geopolymers. Cem Concr Res. 2021;115:103847. doi: 10.1016/j.cemconcomp.2020.103847.
  • Wang D, Hou P, Stephan D, et al. /TiO2 composite powders deposited on cement-based materials: rhodamine B removal and the bonding mechanism. Constr Build Mater. 2020;241:118124. doi: 10.1016/j.conbuildmat.2020.118124.
  • Pei C, Zhu JH, Xing F. Photocatalytic property of cement mortars coated with graphene/TiO2 nanocomposites synthesized via sol–gel assisted electrospray method. J Clean Prod. 2021;279:123590. doi: 10.1016/j.jclepro.2020.123590.
  • Khannyra S, Mosquera MJ, Addou M, et al. Cu-TiO2/SiO2 photocatalysts for concrete-based building materials: self-cleaning and air depollution performance. Constr Build Mater. 2021;313:125419. doi: 10.1016/j.conbuildmat.2021.125419.
  • Yang LY, Jia ZJ, Zhang YM, et al. Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes. Cem Concr Compos. 2015;57:1–7. doi: 10.1016/j.cemconcomp.2014.11.009.
  • Nazari A, Riahi S. The effect of TiO2 nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete. Mater Sci Eng A. 2010;528(2):756–763. doi: 10.1016/j.msea.2010.09.074.
  • Feng D, Xie N, Gong C, et al. Portland cement paste modified by TiO2 nanoparticles: a microstructure perspective. Ind Eng Chem Res. 2013;52(33):11575–11582. doi: 10.1021/ie4011595.
  • Sri Rama Chand M, Rathish Kumar P, Swamy Naga Ratna Giri P, et al. Performance and microstructure characteristics of self-curing self-compacting concrete. Adv Cem Res. 2018;30(10):451–468. doi: 10.1680/jadcr.17.00154.
  • Chand MSR, Swamy Naga Ratna Giri P, Rathish Kumar P, et al. Effect of self-curing chemicals in self-compacting mortars. Constr Build Mater. 2016;107:356–364. doi: 10.1016/j.conbuildmat.2016.01.018.
  • Pallapothu SNRG, Garje RK, Madduru SRC, et al. Influence of hydrophilic compounds on the performance of recycled aggregate concretes. J Sustain Cem Based Mater. 2017;6(5):332–344. doi: 10.1080/21650373.2017.1280429.
  • Scrivener KL, Füllmann T, Gallucci E, et al. Quantitative study of Portland cement hydration by X-ray diffraction/rietveld analysis and independent methods. Cem Concr Res. 2004;34(9):1541–1547. doi: 10.1016/j.cemconres.2004.04.014.
  • Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr. 1969;2(2):65–71. doi: 10.1107/S0021889869006558.
  • Aranda* MAG, De la Torre AG, Leon-Reina L. Rietveld quantitative phase analysis of OPC clinkers, cements and hydration products. Rev Mineral Geochem. 2012;74(1):169–209. doi: 10.2138/rmg.2012.74.5.
  • Roy N, Mangiri R, Reddy GP, et al. Carbon nanofiber-supported elongated square bipyramid-like MnWO4 composite electrodes for high-performance battery-type supercapacitors: enhanced electrochemical performance via synergistic effect. Electroanal Chem. 2023;947:117764. doi: 10.1016/j.jelechem.2023.117764.
  • Ankoji P, Rudramadevi BH. Structural and luminescence properties of Eu3+ doped LaAlO3 nanophosphors by hydrothermal method. J Mater Sci Mater Electron. 2019;30(3):2750–2762. doi: 10.1007/s10854-018-0551-6.
  • Patureau P, Dessapt R, Deniard P, et al. Persistent type-II multiferroicity in nanostructured MnWO4 ceramics. Chem Mater. 2016;28(21):7582–7585. doi: 10.1021/acs.chemmater.6b03803.
  • Assis M, Tello AC, Abud FS, et al. Bridging experiment and theory: morphology, optical, electronic, and magnetic properties of MnWO4. Appl Surf Sci. 2022;600:154081. doi: 10.1016/j.apsusc.2022.154081.
  • Indian Standards. IS: 8042–2015 ‘white Portland cement-specification’ (third revision). New Delhi: Bureau of Indian Standards; 2015.
  • Indian Standards. IS 1489 (part 1): 2015 ‘Portland Pozzolana cement-specification’, part 1 fly ash based (fourth revision). New Delhi: Bureau of Indian Standards; 2015.
  • Indian Standards. IS 269:2015 ‘ordinary Portland cement-specification’ (sixth revision). New Delhi: Bureau of Indian Standards; 2015.
  • Indian Standards. IS:383-2016 ‘coarse and fine aggregate for concrete-specification’ (third revision). New Delhi: Bureau of Indian Standards; 2016.
  • Indian Standards. IS 456: 2000 ‘plain and reinforced concrete – code of practice’ (fourth revision). New Delhi: Bureau of Indian Standards; 2000.
  • Guo MZ, Maury-Ramirez A, Poon CS. Photocatalytic activities of titanium dioxide incorporated architectural mortars: effects of weathering and activation light. Build Environ. 2015;94:395–402. doi: 10.1016/j.buildenv.2015.08.027.
  • Khataee AR, Amani-Ghadim AR, Rastegar Farajzade M, et al. Photocatalytic activity of nanostructured TiO2‐modified white cement. J. Exp Nanosci. 2011;6(2):138–148. doi: 10.1080/17458080.2010.48369.
  • Cerro-Prada E, Manso M, Torres V, et al. Microstructural and photocatalytic characterization of cement-paste sol-gel synthesized titanium dioxide. Front Struct Civ Eng. 2016;10(2):189–197. doi: 10.1007/s11709-015-0326-6.
  • Wang D, Hou P, Zhang L, et al. Photocatalytic activities and chemically bonded mechanism of SiO2@ TiO2 nanocomposites coated cement-based materials. Mater Res Bull. 2018;102:262–268. doi: 10.1016/j.materresbull.2018.02.013.
  • Smits M, Kit Chan C, Tytgat T, et al. Photocatalytic degradation of soot deposition: self-cleaning effect on titanium dioxide coated cementitious materials. J Chem Eng. 2013;222:411–418. doi: 10.1016/j.cej.2013.02.089.
  • Wang J, Lu C, Xiong J. Self-cleaning and depollution of fiber reinforced cement materials modified by neutral TiO2/SiO2 hydrosol photoactive coatings. Appl Surf Sci. 2014;298:19–25. doi: 10.1016/j.apsusc.2013.12.171.
  • Ma B, Li H, Li X, et al. Influence of nano-TiO2 on physical and hydration characteristics of fly ash–cement systems. Constr Build Mater. 2016;122:242–253. doi: 10.1016/j.conbuildmat.2016.02.087.
  • Larsen G. Microscopic point measuring: a quantitative petrographic method of determining the Ca (OH)2 content of the cement paste of concrete. Mag Concr Res. 1961;13(38):71–76. doi: 10.1680/macr.1961.13.38.71.
  • Janczarek M, Klapiszewski Ł, Jędrzejczak P, et al. Progress of functionalized TiO2-based nanomaterials in the construction industry: a comprehensive review. J Chem Eng. 2022;430:132062. doi: 10.1016/j.cej.2021.132062.
  • Chen J, Kou SC, Poon CS. Hydration and properties of nano-TiO2 blended cement composites. Cem Concr Compos. 2012;34(5):642–649. doi: 10.1016/j.cemconcomp.2012.02.009.
  • Wang L, Zheng D, Zhang S, et al. Effect of nano-SiO2 on the hydration and microstructure of Portland cement. Nanomat. 2016;6(12):241. doi: 10.3390/nano6120241.
  • Ng DS, Paul SC, Anggraini V, et al. Influence of SiO2, TiO2 and Fe2O3 nanoparticles on the properties of fly ash blended cement mortars. Constr Build Mater. 2020;258:119627. doi: 10.1016/j.conbuildmat.2020.119627.
  • Daniyal M, Akhtar S, Azam A. Effect of nano-TiO2 on the properties of cementitious composites under different exposure environments. J Mater Res Technol. 2019;8(6):6158–6172. doi: 10.1016/j.jmrt.2019.10.010.
  • Sun J, Tian L, Yu Z, et al. Studies on the size effects of nano-TiO2 on Portland cement hydration with different water to solid ratios. Constr Build Mater. 2020;259:120390. doi: 10.1016/j.conbuildmat.2020.120390.
  • Jalal M, Fathi M, Farzad M. Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self-compacting concrete. Mech Mater. 2013;61:11–27. doi: 10.1016/j.mechmat.2013.01.010.
  • Goudar SK, Das BB, Arya SB. Microstructural study of steel–concrete interface and its influence on bond strength of reinforced concrete. Adv Civ Eng Mater. 2019;8(1):171–189. doi: 10.1520/ACEM20180133.
  • Hu Q, Aboustait M, Kim T, et al. Direct three-dimensional observation of the microstructure and chemistry of C3S hydration. Cem Concr Res. 2016;88:157–169. doi: 10.1016/j.cemconres.2016.07.006.
  • Snehal K, Das BB. Effect of phase-change materials on the hydration and mineralogy of cement mortar. Proc Inst Civ Eng Constr. 2020;176(3):117–127. doi: 10.1680/jcoma.20.00045.
  • Trivedi SS, Sarangi D, Das BB, et al. Influence of multistage processing and mechano-chemical treatments on the hydration and microstructure properties of recycled aggregate concrete. Constr Build Mater. 2023;409:133993. doi: 10.1016/j.conbuildmat.2023.133993.
  • Mitchell LD, Margeson JC, Whitfield PS. Quantitative rietveld analysis of hydrated cementitious systems. Powder Diffr. 2006;21(2):111–113. doi: 10.1154/1.2204056.
  • Cuesta A, Ichikawa RU, Londono-Zuluaga D, et al. Aluminum hydroxide gel characterization within a calcium aluminate cement paste by combined pair distribution function and rietveld analyses. Cem Concr Res. 2017;96:1–12. doi: 10.1016/j.cemconres.2017.02.025.
  • Altomare A, Cuocci C, Giacovazzo C, et al. EXPO2013: a kit of tools for phasing crystal structures from powder data. J Appl Crystallogr. 2013;46(4):1231–1235. doi: 10.1107/S0021889813013113.
  • Reddy GR, Dillip GR, Sreekanth TVM, et al. Mechanistic investigation of defect-engineered, nonstoichiometric, and morphology-regulated hierarchical rhombus-/spindle-/peanut-like ZnCo2O4 microstructures and their applications toward high-performance supercapacitors. Appl Surf Sci. 2020;529:147123. doi: 10.1016/j.apsusc.2020.147123.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.