1,046
Views
7
CrossRef citations to date
0
Altmetric
Addendum

Advances in engineered microorganisms for improving metabolic conversion via microgravity effects

, , &
Pages 251-255 | Received 04 May 2015, Accepted 26 May 2015, Published online: 24 Jul 2015

References

  • Baumann K, Carnicer M, Dragosits M, Graf AB, Stadlmann J, Jouhten P, Maaheimo H, Gasser B, Albiol J, Mattanovich D, et al. A multi-level study of recombinant Pichia pastoris in different oxygen conditions. BMC Syst Biol 2010; 22(4):141; PMID:20969759; http://dx.doi.org/10.1186/1752-0509-4-141
  • Klaus DM. Microgravity and its implication for fermentation biotechnology. Trends Biotechnol 1998; 16(9):369-73; PMID:9776612
  • Kim HW, Matin A, Rhee MS. Microgravity alters the physiological characteristics of Escherichia coli O157:H7 ATCC 35150, ATCC 43889, and ATCC 43895 under different nutrient conditions. Appl Environ Microbiol 2014; 80(7):2270-8; PMID:24487539; http://dx.doi.org/10.1128/AEM.04037-13
  • Arunasri K, Adil M, Venu Charan K, Suvro C, Himabindu Reddy S, Shivaji S. Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression. PLoS One 2013; 8(3):e57860; PMID:23472115; http://dx.doi.org/10.1371/journal.pone.0057860
  • Raja V, Eric M, Laura L. Changes in gene expression of E. coli under conditions of modeled reduced gravity. Microgravity Sci Technol 2008; 20:41-57; PMID:17343762
  • Johanson K, Allen PL, Lewis F, Cubano LA, Hyman LE, Hammond TG. Saccharomyces cerevisiae gene expression changes during rotating wall vessel suspension culture. J Appl Physiol (1985) 2002; 93(6):2171-80; PMID:12391061
  • Van Mulders SE, Stassen C, Daenen L, Devreese B, Siewers V, van Eijsden RG, Nielsen J, Delvaux FR, Willaert R. The influence of microgravity on invasive growth in Saccharomyces cerevisiae. Astrobiology 2011; 11(1):45-55; PMID:21345087; http://dx.doi.org/10.1089/ast.2010.0518
  • Kobayashi Y, Narumi I, Satoh K, Funayama T, Kikuchi M, Kitayama S, Watanabe H. Radiation response mechanisms of the extremely radioresistant bacterium Deinococcus radiodurans. Biol Sci Space 2004; 18(3):134-5; PMID:15858357
  • Rosenzweig JA, Ahmed S, Eunson J Jr, Chopra AK. Low-shear force associated with modeled microgravity and spaceflight does not similarly impact the virulence of notable bacterial pathogens. Appl Microbiol Biotechnol 2014; 98(21):8797-807; PMID:25149449; http://dx.doi.org/10.1007/s00253-014-6025-8
  • Brown RB, Klaus D, Todd P. Effects of space flight, clinorotation, and centrifugation on the substrate utilization efficiency of E. coli. Microgravity Sci Technol 2002; 13(4):24-9; PMID:12521048
  • Searles SC, Woolley CM, Petersen RA, Hyman LE, Nielsen-Preiss SM. Modeled microgravity increases filamentation, biofilm formation, phenotypic switching, and antimicrobial resistance in Candida albicans. Astrobiology 2011; 11(8):825-36; PMID:21936634; http://dx.doi.org/10.1089/ast.2011.0664
  • Breitling R, Takano E. Synthetic biology advances for pharmaceutical production. Curr Opin Biotechnol 2015; 35C:46-51; PMID:25744872; http://dx.doi.org/10.1016/j.copbio
  • Demain AL, Fang A. Secondary metabolism in simulated microgravity. Chem Rec 2001; 1:333-346. PMID:11893073
  • Fang A, Pierson DL, Mishra SK, Koenig DW, Demain AL. Secondary metabolism in simulated microgravity: β-lactam production by Streptomyces clavuligerus. J Ind Microbiol Biotechnol 1997; 18(1):22-5; PMID:9079284
  • Fang A, Pierson DL, Mishra SK, Demain AL. Growth of Streptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production. Appl Microbiol Biotechnol 2000; 54(1):33-6; PMID:10952002
  • Benoit MR, Li W, Stodieck LS, Lam KS, Winther CL, Roane TM, Klaus DM. Microbial antibiotic production aboard the International Space Station. Appl Microbiol Biotechnol 2006; 70(4):403-11; PMID:16091928
  • Fang A, Pierson DL, Mishra SK, Demain AL. Relief from glucose interference in microcin B17 biosynthesis by growth in a rotating-wall bioreactor. Lett Appl Microbiol 2000; 31(1):39-41; PMID:10886612
  • Fang A, Pierson DL, Koenig DW, Mishra SK, Demain AL. Effect of simulated microgravity and shear stress on microcin B7 production by Escherichia coli and on its excretion into the medium. Appl Environ Microbiol 1997; 63(10):4090-2; PMID:9327574
  • Liu M, Gao H, Shang P, Zhou X, Ashforth E, Zhuo Y, Chen D, Ren B, Liu Z, Zhang L. Magnetic field is the dominant factor to induce the response of Streptomyces avermitilis in altered gravity simulated by diamagnetic levitation. PLoS One 2011; 6(10):e24697; PMID:22039402; http://dx.doi.org/10.1371/journal.pone
  • Stephen N. Rotary bioreactor for recombinant protein production. Cell Technology for Cell Products 2007; 3:567-569; http://dx.doi.org/10.1007/978-1-4020-5476-1_98
  • Xiang L, Qi F, Dai D, Li C, Jiang Y. Simulated microgravity affects growth of E.coli and recombinant beta-D-glucuronidase production. Appl Biochem Biotechnol 2010; 162(3):654-61; PMID:19921492; http://dx.doi.org/10.1007/s12010-009-8836-0
  • Qi F, Imdad K, Lv B, Guo X, Li C. Enhancement of recombinant β-D-glucuronidase production under low-shear modeled microgravity in P.pastoris. J Chem Technol Biot 2011; 86(4):505-511; http://dx.doi.org/10.1002/jctb.2541
  • Foster LJ, Catzel D, Atwa S, Zarka M, Mahler SM. Increase in synthesis of human monoclonal antibodies by transfected Sp2/0 myeloma mouse cell line under conditions of microgravity. Biotechnol Lett 2003; 25(15):1271-4. PMID:14514080
  • Boyle D, Montelone B, Cornejo A, Takemoto L. Effects of Microgravity upon Growth, Morphology, and Expression of Recombinant Protein in E. coli. Cosmic Research 1995; 34:609
  • Li GB, Liu YD, Wang GH, Song LR. Reactive oxygen species and antioxidant enzymes activity of Anabaena sp. PCC 7120 (Cyanobacterium) under simulated microgravity. Acta Astronaut 2004; 55(11):953-7; PMID:15806733; http://dx.doi.org/10.1016/j.actaastro.2004.04.014
  • Gaubin Y, Prevost MC, Cariven C, Pianezzi B, Planel H, Soleilhavoup JP. Enzyme activities and membrane lipids in Artemia cysts after a long duration space. Adv Space Res 1996; 18(12):221-227; http://dx.doi.org/10.1016/0273-1177(96)00043-9
  • Qi F, Dai D, Liu Y, Kaleem I, Li C. Effects of low-shear modeled microgravity on the characterization of recombinant β-D-glucuronidase expressed in Pichia pastoris. Appl Biochem Biotechnol 2011; 163(1):162-72; PMID:20607443; http://dx.doi.org/10.1007/s12010-010-9025-x
  • Sheehan KB, McInnerney K, Purevdorj-Gage B, Altenburg SD, Hyman LE. Yeast genomic expression patterns in response to low-shear modeled microgravity. BMC Genomics 2007; 8:3; PMID:17201921; http://dx.doi.org/10.1186/1471-2164-8-3
  • Crabbé A, Schurr MJ, Monsieurs P, Morici L, Schurr J, Wilson JW, Ott CM, Tsaprailis G, Pierson DL, Stefanyshyn-Piper H, et al. Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Appl Environ Microbiol 2011; 77(4):1221-30; PMID:21169425; http://dx.doi.org/10.1128/AEM.01582-10
  • Mangala LS, Zhang Y, He Z, Emami K, Ramesh GT, Story M, Rohde LH, Wu H. Effects of simulated microgravity on expression profile of microRNA in human lymphoblastoid cells. J Biol Chem 2011; 286(37):32483-90; PMID:21775437; http://dx.doi.org/10.1074/jbc.M111.267765
  • Wilson JW, Ott CM, Höner zu Bentrup K, Ramamurthy R, Quick L, Porwollik S, Cheng P, McClelland M, Tsaprailis G, Radabaugh T, et al. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Nat Acad Sci U S A 2007; 104(41):16299-304; PMID:17901201
  • Qi F, Wang C, Liu Y, Kaleem I, Li Q, Li C. Transcriptional profiling of protein expression related genes of P. pastoris under simulated microgravity. PLoS One 2011; 6(11):e26613; PMID:3206813; http://dx.doi.org/10.1371/journal.pone.0026613
  • Bradamante S, Villa A, Versari S, Barenghi L, Orlandi I, Vai M. Oxidative stress and alterations in actin cytoskeleton trigger glutathione efflux in Saccharomyces cerevisiae. Biochim Biophys Acta 2010; 1803(12):1376-85; PMID:20708643; http://dx.doi.org/10.1016/j.bbamcr.2010.07.007
  • Huangfu J, Qi F, Liu H, Zou H, Ahmed MS, Li C. Novel helper factors influencing recombinant protein production in Pichia pastoris based on proteomic analysis under simulated microgravity. Appl Microbiol Biotechnol 2015; 99(2):653-65; PMID:25359479; http://dx.doi.org/10.1007/s00253-014-6175-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.