2,389
Views
23
CrossRef citations to date
0
Altmetric
Research Paper

Rapid identification of antibiotic resistance using droplet microfluidics

, , , &
Pages 79-87 | Received 30 Nov 2015, Accepted 12 Feb 2016, Published online: 26 Apr 2016

References

  • National C, for, Health, Statistics. Antibiotic Resistance Threats in the United States, 2013. USA: U S Department of Health and Human Services, 2013
  • Kollef MH, Fraser VJ. Antibiotic resistance in the intensive care unit. Annals Internal Med 2001; 134:298-314; http://dx.doi.org/10.7326/0003-4819-134-4-200102200-00014
  • Rubin RJ, Harrington CA, Poon A, Dietrich K, Greene JA, Moiduddin A. The economic impact of Staphylococcus aureus infection in New York City hospitals. Emerging Infect Dis 1999; 5:9-17; PMID:10081667; http://dx.doi.org/10.3201/eid0501.990102
  • McDonnell N. Group. Antibiotic Overuse: The Influence of Social Norms. J Am College Surgeons McDonnell Norms Group 207:265-75
  • Mohan R, Mukherjee A, Sevgen SE, Sanpitakseree C, Lee J, Schroeder CM, Kenis PJA. A multiplexed microfluidic platform for rapid antibiotic susceptibility testing. Biosensors Bioelectronics 2013; 49:118-25; PMID:23728197; http://dx.doi.org/10.1016/j.bios.2013.04.046
  • Reller LB, Weinstein M, Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 2009; 49:1749-55; PMID:19857164; http://dx.doi.org/10.1086/647952
  • Chang WH, Wang CH, Lin CL, Wu JJ, Lee MS, Lee GB. Rapid detection and typing of live bacteria from human joint fluid samples by utilizing an integrated microfluidic system. Biosensors Bioelectronics 2015; 66:148-54; PMID:25460896; http://dx.doi.org/10.1016/j.bios.2014.11.006
  • Churski K, Kaminski TS, Jakiela S, Kamysz W, Baranska-Rybak W, Weibel DB, Garstecki P. Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab on a Chip 2012; 12:1629-37; PMID:22422170; http://dx.doi.org/10.1039/c2lc21284f
  • Hayes CJ, Dalton TM. Microfluidic droplet-based PCR instrumentation for high-throughput gene expression profiling and biomarker discovery. Biomol Detection Quantification 2015; 4:22-32; http://dx.doi.org/10.1016/j.bdq.2015.04.003
  • Ward T, Faivre M, Abkarian M, Stone HA. Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping. Electrophoresis 2005; 26:3716-24; PMID:16196106; http://dx.doi.org/10.1002/elps.200500173
  • Squires TM, Quake SR. Microfluidics: Fluid physics at the nanoliter scale. Rev Modern Physics 2005; 77:977-1026; http://dx.doi.org/10.1103/RevModPhys.77.977
  • Boedicker JQ, Li L, Kline TR, Ismagilov RF. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab on a Chip 2008; 8:1265-72; PMID:18651067; http://dx.doi.org/10.1039/b804911d
  • Sun P, Liu Y, Sha J, Zhang Z, Tu Q, Chen P, Wang J. High-throughput microfluidic system for long-term bacterial colony monitoring and antibiotic testing in zero-flow environments. Biosensors Bioelectronics 2011; 26:1993-9; PMID:20880691; http://dx.doi.org/10.1016/j.bios.2010.08.062
  • McCarthy C. On the Utilisation of Taylor flows for Automation Cell to Signal. Department of mechanical, aeronautical and biomedical engineering. Ireland: University of Limerick, 2015
  • Baroud CN, Gallaire F, Dangla R. Dynamics of microfluidic droplets. Lab on a Chip 2010; 10:2032-45; PMID:20559601; http://dx.doi.org/10.1039/c001191f
  • Tice JD, Song H, Lyon AD, Ismagilov RF. Formation of droplets and mixing in multiphase microfluidics at low values of the reynolds and the capillary numbers. Langmuir 2003; 19:9127-33; http://dx.doi.org/10.1021/la030090w
  • Kiefer J, Ebel N, Schlucker E, Leipertz A. Characterization of Escherichia coli suspensions using UV/Vis/NIR absorption spectroscopy. Analytical Methods 2010; 2:123-8; http://dx.doi.org/10.1039/B9AY00185A
  • Jakiela S, Kaminski TS, Cybulski O, Weibel DB, Garstecki P. Bacterial growth and adaptation in microdroplet chemostats. Angewandte Chemie Int Edition 2013; 52:8908-11; http://dx.doi.org/10.1002/anie.201301524
  • McClenaghan VAGaNH. Understanding bioanalytical chemistry principles and applications. John Wiley & Sons, Ltd, 2009
  • Zhong JJ, Fujiyama K, Seki T, Yoshida T. A quantitative analysis of shear effects on cell suspension and cell culture of perilla frutescens in bioreactors. Biotechnol Bioengineering 1994; 44:649-54; http://dx.doi.org/10.1002/bit.260440512
  • Kurup GK, Basu AS. Hydrodynamic particle concentration inside a microfluidic plug. 14th International Conferene on Minaturized Systems for Chemsity and Life Sciences Netherlands: MicroTAS 2010. 2010; 2:740-742

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.