17,406
Views
53
CrossRef citations to date
0
Altmetric
Commentary

Optimization of genome editing through CRISPR-Cas9 engineering

, , , &
Pages 166-174 | Received 13 Apr 2016, Accepted 09 May 2016, Published online: 24 Jun 2016

References

  • Weninger A, Hatzl AM, Schmid C, Vogl T, Glieder A. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris. J Biotechnol. 2016 Mar 22. PII: S0168-1656(16)30134-1. http://dx.doi.org/ 10.1016/j.jbiotec.2016.03.027.
  • Calarco JA, Friedland AE. Creating genome modifications in C. elegans Using the CRISPR/Cas9 System. Methods Mol Biol 2015;1327:59-74; PMID:26423968; http://dx.doi.org/10.1007/978-1-4939-2842-2_6
  • Housden BE, Lin S, Perrimon N. Cas9-based genome editing in Drosophila. Methods Enzymol 2014;546:415-39; PMID:25398351; http://dx.doi.org/10.1016/B978-0-12-801185-0.00019-2
  • Hu X, Wang C, Fu Y, Liu Q, Jiao X, Wang K. Expanding the range of CRISPR/Cas9 genome editing in rice. Mol Plant 2016.
  • Maresch R, Mueller S, Veltkamp C, Ollinger R, Friedrich M, Heid I, Steiger K, Weber J, Engleitner T, Barenboim M, et al. Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nat Commun 2016;7:10770; PMID:26916719; http://dx.doi.org/10.1038/ncomms10770
  • Kang Y, Zheng B, Shen B, Chen Y, Wang L, Wang J, Niu Y, Cui Y, Zhou J, Wang H, et al. CRISPR/Cas9-mediated Dax1 knockout in the monkey recapitulates human AHC-HH. Hum Mol Genet 2015;24:7255-64; PMID:26464492; http://dx.doi.org/10.1093/hmg/ddv425
  • Graham DM. CRISPR/Cas9 corrects retinal dystrophy in rats. Lab Animal 2016;45:85; PMID:26886660; http://dx.doi.org/10.1038/laban.965
  • Dominguez AA, Lim WA, Qi LS. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 2016;17:5-15; PMID:26670017; http://dx.doi.org/10.1038/nrm.2015.2
  • Vojta A, Dobrinic P, Tadic V, Bockor L, Korac P, Julg B, Klasic M, Zoldos V. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 2016; PMID:26969735; http://dx.doi.org/10.1093/nar/gkw159.
  • Pham H, Kearns NA, Maehr R. Transcriptional regulation with CRISPR/Cas9 effectors in mammalian cells. Methods Mol Biol 2016;1358:43-57; PMID:26463376; http://dx.doi.org/10.1007/978-1-4939-3067-8_3
  • Zhang N, Zhi H, Curtis BR, Rao S, Jobaliya C, Poncz M, French DL, Newman PJ. CRISPR/Cas9-mediated conversion of human platelet alloantigen allotypes. Blood 2016;127:675-80; PMID:26634302; http://dx.doi.org/10.1182/blood-2015-10-675751
  • Muller M, Lee CM, Gasiunas G, Davis TH, Cradick TJ, Siksnys V, Bao G, Cathomen T, Mussolino C. Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Mol Ther: J Am Soc Gene Ther 2016;24:636-44; PMID:26658966; http://dx.doi.org/10.1038/mt.2015.218
  • Savic N, Schwank G. Advances in therapeutic CRISPR/Cas9 genome editing. Translat Res: J Lab Clin Med 2016;168:15-21; PMID:26470680; http://dx.doi.org/10.1016/j.trsl.2015.09.008
  • Shinmyo Y, Tanaka S, Tsunoda S, Hosomichi K, Tajima A, Kawasaki H. CRISPR/Cas9-mediated gene knockout in the mouse brain using in utero electroporation. Sci Rep 2016;6:20611; PMID:26857612; http://dx.doi.org/10.1038/srep20611
  • Vassena R, Heindryckx B, Peco R, Pennings G, Raya A, Sermon K, Veiga A. Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells. Hum Reproduct Update 2016; PMID:26932460; http://dx.doi.org/10.1093/humupd/dmw005
  • Wang D, Ma N, Hui Y, Gao X. [The application of CRISPR/Cas9 genome editing technology in cancer research]. Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji 2016;38:1-8.
  • Liu X, Homma A, Sayadi J, Yang S, Ohashi J, Takumi T. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system. Sci Rep 2016;6:19675; PMID:26813419; http://dx.doi.org/10.1038/srep19675
  • White MK, Khalili K. CRISPR/Cas9 and cancer targets: future possibilities and present challenges. Oncotarget 2016;7:12305-17; PMID:26840090
  • Renaud JB, Boix C, Charpentier M, De Cian A, Cochennec J, Duvernois-Berthet E, Perrouault L, Tesson L, Edouard J, Thinard R, et al. Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Rep 2016;14:2263-72; PMID:26923600; http://dx.doi.org/10.1016/j.celrep.2016.02.018
  • Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 2016;34:184-91; PMID:26780180; http://dx.doi.org/10.1038/nbt.3437
  • Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016;529:490-5; PMID:26735016; http://dx.doi.org/10.1038/nature16526
  • Chen H, Bailey S. Structural biology. Cas9, poised for DNA cleavage. Science 2016;351:811-2; PMID:26912877; http://dx.doi.org/10.1126/science.aaf2089
  • Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K, Thompson AJ, Nogales E, Doudna JA. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 2016;351:867-71; PMID:26841432; http://dx.doi.org/10.1126/science.aad8282
  • Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M, Hsu PD, Nakane T, Ishitani R, Hatada I, Zhang F, et al. Structure and Engineering of Francisella novicida Cas9. Cell 2016;164:950-61; PMID:26875867; http://dx.doi.org/10.1016/j.cell.2016.01.039
  • Zlotorynski E. Genome engineering: Structure-guided improvement of Cas9 specificity. Nat Rev Mol Cell Biol 2016;17:3.
  • Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science 2016;351:84-8; PMID:26628643; http://dx.doi.org/10.1126/science.aad5227
  • Nelson CE, Gersbach CA. Cas9 loosens its grip on off-target sites. Nat Biotechnol 2016;34:298-9; PMID:26963555; http://dx.doi.org/10.1038/nbt.3501
  • Nishimasu H, Cong L, Yan WX, Ran FA, Zetsche B, Li Y, Kurabayashi A, Ishitani R, Zhang F, Nureki O. Crystal Structure of Staphylococcus aureus Cas9. Cell 2015;162:1113-26; PMID:26317473; http://dx.doi.org/10.1016/j.cell.2015.08.007
  • Brazelton VA, Jr., Zarecor S, Wright DA, Wang Y, Liu J, Chen K, Yang B, Lawrence-Dill CJ. A quick guide to CRISPR sgRNA design tools. GM Crops Food 2015;6:266-76; PMID:26745836; http://dx.doi.org/10.1080/21645698.2015.1137690
  • Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 2013;31:839-43; PMID:23934178; http://dx.doi.org/10.1038/nbt.2673
  • Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015;520:186-91; PMID:25830891; http://dx.doi.org/10.1038/nature14299
  • Gagnon JA, Valen E, Thyme SB, Huang P, Akhmetova L, Pauli A, Montague TG, Zimmerman S, Richter C, Schier AF. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PloS One 2014;9:e98186; PMID:24873830; http://dx.doi.org/10.1371/journal.pone.0098186
  • Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, Zheng Z, Joung JK. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 2015;33:1293-8; PMID:26524662; http://dx.doi.org/10.1038/nbt.3404
  • Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 2015;523:481-5; PMID:26098369; http://dx.doi.org/10.1038/nature14592
  • Li Y, Mendiratta S, Ehrhardt K, Kashyap N, White MA, Bleris L. Exploiting the CRISPR/Cas9 PAM constraint for single-nucleotide resolution interventions. PloS One 2016;11:e0144970; PMID:26788852; http://dx.doi.org/10.1371/journal.pone.0144970
  • Jinqing W, Gui M, Zhiguo L, Yaosheng C, Peiqing C, Zuyong H. Improving gene targeting efficiency on pig IGF2 mediated by ZFNs and CRISPR/Cas9 by using SSA reporter system. Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji 2015;37:55-62.
  • Ramakrishna S, Cho SW, Kim S, Song M, Gopalappa R, Kim JS, Kim H. Surrogate reporter-based enrichment of cells containing RNA-guided Cas9 nuclease-induced mutations. Nat Commun 2014;5:3378; PMID:24569644; http://dx.doi.org/10.1038/ncomms4378
  • Vriend LE, Jasin M, Krawczyk PM. Assaying break and nick-induced homologous recombination in mammalian cells using the DR-GFP reporter and Cas9 nucleases. Methods Enzymol 2014;546:175-91; PMID:25398341; http://dx.doi.org/10.1016/B978-0-12-801185-0.00009-X
  • Zhang JH, Pandey M, Kahler JF, Loshakov A, Harris B, Dagur PK, Mo YY, Simonds WF. Improving the specificity and efficacy of CRISPR/CAS9 and gRNA through target specific DNA reporter. J Biotechnol 2014;189:1-8; PMID:25193712; http://dx.doi.org/10.1016/j.jbiotec.2014.08.033
  • Jiang F, Zhou K, Ma L, Gressel S, Doudna JA. Structural biology. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 2015;348:1477-81; PMID:26113724; http://dx.doi.org/10.1126/science.aab1452
  • Quetier F. The CRISPR-Cas9 technology: Closer to the ultimate toolkit for targeted genome editing. Plant Sci: Int J Exp Plant Biol 2016;242:65-76; PMID:26566825; http://dx.doi.org/10.1016/j.plantsci.2015.09.003
  • Urnov F. Genome editing: The domestication of Cas9. Nature 2016;529:468-9; PMID:26819037; http://dx.doi.org/10.1038/529468a
  • Farasat I, Salis HM. A biophysical model of CRISPR/Cas9 activity for rational design of genome editing and gene regulation. PLoS Comput Biol 2016;12:e1004724; PMID:26824432; http://dx.doi.org/10.1371/journal.pcbi.1004724
  • Xue HY, Ji LJ, Gao AM, Liu P, He JD, Lu XJ. CRISPR-Cas9 for medical genetic screens: applications and future perspectives. J Medical Genet 2016;53:91-7; PMID:26673779
  • Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, Tsai JC, Weissman JS, Dueber JE, Qi LS, et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 2015;160:339-50; PMID:25533786; http://dx.doi.org/10.1016/j.cell.2014.11.052
  • Polstein LR, Gersbach CA. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol 2015;11:198-200; PMID:25664691; http://dx.doi.org/10.1038/nchembio.1753
  • Wojtal D, Kemaladewi DU, Malam Z, Abdullah S, Wong TW, Hyatt E, Baghestani Z, Pereira S, Stavropoulos J, Mouly V, et al. Spell checking nature: versatility of CRISPR/Cas9 for developing treatments for inherited disorders. Am J Hum Genet 2016;98:90-101; PMID:26686765; http://dx.doi.org/10.1016/j.ajhg.2015.11.012
  • Wong AS, Choi GC, Cui CH, Pregernig G, Milani P, Adam M, Perli SD, Kazer SW, Gaillard A, Hermann M, et al. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proc Natl Acad Sci U S A 2016;113:2544-9; PMID:26864203; http://dx.doi.org/10.1073/pnas.1517883113
  • Shao S, Zhang W, Hu H, Xue B, Qin J, Sun C, Sun Y, Wei W, Sun Y. Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucl. Acids Res. (19 May 2016) 44 (9): e86. http://dx.doi.org/10.1093/nar/gkw066.
  • Malina A, Cameron CJ, Robert F, Blanchette M, Dostie J, Pelletier J. PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing. Nat Commun 2015;6:10124; PMID:26644285; http://dx.doi.org/10.1038/ncomms10124
  • Yoshimi K, Kunihiro Y, Kaneko T, Nagahora H, Voigt B, Mashimo T. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun 2016;7:10431; PMID:26786405; http://dx.doi.org/10.1038/ncomms10431
  • He X, Tan C, Wang F, Wang Y, Zhou R, Cui D, You W, Zhao H, Ren J, Feng B. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res. 2016 May 19;44(9):e85. http://dx.doi.org/10.1093/nar/gkw064
  • Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 2010;38:W529-33; PMID:20478830; http://dx.doi.org/10.1093/nar/gkq399
  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 2008;36:W465-9; PMID:18424797; http://dx.doi.org/10.1093/nar/gkn180
  • Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res 2004;14:1188-90; PMID:15173120; http://dx.doi.org/10.1101/gr.849004