2,592
Views
51
CrossRef citations to date
0
Altmetric
Commentary

Progress and obstacles in the production and application of recombinant lignin-degrading peroxidases

, , &
Pages 145-154 | Received 01 Mar 2016, Accepted 13 May 2016, Published online: 13 Jun 2016

References

  • Moreno AD, Ibarra D, Alvira P, Tomas-Pejo E, Ballesteros M. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Crit Rev Biotechnol 2015; 35:342-54; PMID:24506661; http://dx.doi.org/10.3109/07388551.2013.878896
  • Carroll A, Somerville C. Cellulosic biofuels. Annu Rev Plant Biol 2009; 60:165-82; PMID:19014348; http://dx.doi.org/10.1146/annurev.arplant.043008.092125
  • Abdel-Hamid AM, Solbiati JO, Cann IK. Insights into lignin degradation and its potential industrial applications. Adv Appl Microbiol 2013; 82:1-28; PMID:23415151; http://dx.doi.org/10.1016/B978-0-12-407679-2.00001-6
  • Calvo-Flores FG, Dobado JA. Lignin as renewable raw material. Chem Sus Chem 2010; 3:1227-35; PMID:20839280; http://dx.doi.org/10.1002/cssc.201000157
  • Schubert C. Can biofuels finally take center stage? Nat Bio Technol 2006; 24:777-84; PMID:16841058; http://dx.doi.org/10.1038/nbt0706-777
  • Lora JH, Glasser WG. Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials. J Polym Environ 2002; 10:39-48; http://dx.doi.org/10.1023/A:1021070006895
  • Ghaffar SH, Fan MZ. Lignin in straw and its applications as an adhesive. Int J Adhes Adhes 2014; 48:92-101; http://dx.doi.org/10.1016/j.ijadhadh.2013.09.001
  • Bugg TDH, Rahmanpour R. Enzymatic conversion of lignin into renewable chemicals. Curr Opin Chem Biol 2015; 29:10-7; PMID:26121945; http://dx.doi.org/10.1016/j.cbpa.2015.06.009
  • Bugg TDH, Ahmad M, Hardiman EM, Singh R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Bio Tech 2011; 22:394-400; PMID:21071202; http://dx.doi.org/10.1016/j.copbio.2010.10.009
  • Glenn JK, Morgan MA, Mayfield MB, Kuwahara M, Gold MH. An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun 1983; 114:1077-83; PMID:6615503; http://dx.doi.org/10.1016/0006-291X(83)90672-1
  • Tien M, Kirk TK. Lignin-Degrading Enzyme from the Hymenomycete Phanerochaete chrysosporium Burds. Science 1983; 221:661-3; PMID:17787736; http://dx.doi.org/10.1126/science.221.4611.661
  • Pollegioni L, Tonin F, Rosini E. Lignin-degrading enzymes. FEBS J 2015; 282:1190-213; PMID:25649492; http://dx.doi.org/10.1111/febs.13224
  • Colpa DI, Fraaije MW, van Bloois E. DyP-type peroxidases: a promising and versatile class of enzymes. J Ind Microbiol Biot 2014; 41:1-7; http://dx.doi.org/10.1007/s10295-013-1371-6
  • Munk L, Sitarz AK, Kalyani DC, Mikkelsen JD, Meyer AS. Can laccases catalyze bond cleavage in lignin? Bio Technol Adv 2015; 33:13-24; PMID:25560931; http://dx.doi.org/10.1016/j.biotechadv.2014.12.008
  • Roth S, Spiess AC. Laccases for biorefinery applications: a critical review on challenges and perspectives. Bio Process Bio Syst Eng 2015; 38:2285-313; PMID:26437966; http://dx.doi.org/10.1007/s00449-015-1475-7
  • Garvey M, Klose H, Fischer R, Lambertz C, Commandeur U. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms. Trends Bio Technol 2013; 31:581-93; PMID:23910542; http://dx.doi.org/10.1016/j.tibtech.2013.06.006
  • Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U. Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Bio Technol Bio Fuels 2014; 7:135; PMID:25356086; http://dx.doi.org/10.1186/s13068-014-0135-5
  • Johnson TM, Li JK. Heterologous expression and characterization of an active lignin peroxidase from Phanerochaete chrysosporium using recombinant baculovirus. Arch Bio Chem Bio Phys 1991; 291:371-8; PMID:1952950; http://dx.doi.org/10.1016/0003-9861(91)90148-C
  • Pease EA, Aust SD, Tien M. Heterologous expression of active manganese peroxidase from Phanerochaete chrysosporium using the baculovirus expression system. Bio Chem Bio Phys Res Commun 1991; 179:897-903; PMID:1898410; http://dx.doi.org/10.1016/0006-291X(91)91903-P
  • Mayfield MB, Kishi K, Alic M, Gold MH. Homologous expression of recombinant manganese peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 1994; 60:4303-9; PMID:7811070
  • Gelpke MDS, Mayfield-Gambill M, Cereghino GPL, Gold MH. Homologous expression of recombinant lignin peroxidase in Phanerochaete chrysosporium. Appl Environ Microb 1999; 65:1670-4.
  • Tsukihara T, Honda Y, Sakai R, Watanabe T, Watanabe T. Exclusive overproduction of recombinant versatile peroxidase MnP2 by genetically modified white rot fungus, Pleurotus ostreatus. J Bio Technol 2006; 126:431-9; PMID:16820241; http://dx.doi.org/10.1016/j.jbiotec.2006.05.013
  • Whitwam R, Tien M. Heterologous expression and reconstitution of fungal Mn peroxidase. Arch Bio Chem Biophys 1996; 333:439-46; PMID:8809085; http://dx.doi.org/10.1006/abbi.1996.0413
  • Doyle WA, Blodig W, Veitch NC, Piontek K, Smith AT. Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Bio Chemistry-Us 1998; 37:15097-105; http://dx.doi.org/10.1021/bi981633h
  • Nie GJ, Reading NS, Aust SD. Expression of the lignin peroxidase H2 gene from Phanerochaete chrysosporium in Escherichia coli. Bio Chem Bioph Res Co 1998; 249:146-50; http://dx.doi.org/10.1006/bbrc.1998.9106
  • Timofeevski SL, Nie G, Reading NS, Aust SD. Addition of veratryl alcohol oxidase activity to manganese peroxidase by site-directed mutagenesis. Bio Chem Bioph Res Co 1999; 256:500-4; http://dx.doi.org/10.1006/bbrc.1999.0360
  • Perez-Boada M, Doyle WA, Ruiz-Duenas FJ, Martinez MJ, Martinez AT, Smith AT. Expression of Pleurotus eryngii versatile peroxidase in Escherichia coli and optimisation of in vitro folding. Enzyme Microb Tech 2002; 30:518-24; http://dx.doi.org/10.1016/S0141-0229(02)00008-X
  • Miki Y, Morales M, Ruiz-Duenas FJ, Martinez MJ, Wariishi H, Martinez AT. Escherichia coli expression and in vitro activation of a unique ligninolytic peroxidase that has a catalytic tyrosine residue. Protein Expr Purif 2009; 68:208-14; PMID:19505579; http://dx.doi.org/10.1016/j.pep.2009.06.003
  • Fernandez-Fueyo E, Ruiz-Duenas FJ, Martinez AT. Engineering a fungal peroxidase that degrades lignin at very acidic pH. Bio Technol Bio Fuels 2014; 7:114; PMID: 25788979; http://dx.doi.org/10.1186/1754-6834-7-114
  • Fernandez-Fueyo E, Ruiz-Duenas FJ, Martinez MJ, Romero A, Hammel KE, Medrano FJ, Martinez AT. Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability. Bio Technol Bio Fuels 2014; 7:2; PMID:24387130; http://dx.doi.org/10.1186/1754-6834-7-2
  • Mohorcic M, Bencina M, Friedrich J, Jerala R. Expression of soluble versatile peroxidase of Bjerkandera adusta in Escherichia coli. Bio Resour Technol 2009; 100:851-8; PMID:18707878; http://dx.doi.org/10.1016/j.biortech.2008.07.005
  • Bao X, Liu A, Lu X, Li JJ. Direct over-expression, characterization and H2O2 stability study of active Pleurotus eryngii versatile peroxidase in Escherichia coli. Bio Technol Lett 2012; 34:1537-43; PMID:22566208; http://dx.doi.org/10.1007/s10529-012-0940-5
  • Mester T, Ambert-Balay K, Ciofi-Baffoni S, Banci L, Jones AD, Tien M. Oxidation of a tetrameric nonphenolic lignin model compound by lignin peroxidase. J Biol Chem 2001; 276:22985-90; PMID:11304528; http://dx.doi.org/10.1074/jbc.M010739200
  • Wang HK, Lu FP, Sun WF, Du LX. Heterologous expression of lignin peroxidase of Phanerochaete chrysosporium in Pichia methanolica. Bio Technol Lett 2004; 26:1569-73; PMID:15604798; http://dx.doi.org/10.1023/B:BILE.0000045654.66689.b4
  • Garcia-Ruiz E, Gonzalez-Perez D, Ruiz-Duenas FJ, Martinez AT, Alcalde M. Directed evolution of a temperature-, peroxide- and alkaline pH-tolerant versatile peroxidase. Bio Chem J 2012; 441:487-98; PMID:21980920; http://dx.doi.org/10.1042/BJ20111199
  • Gu L, Lajoie C, Kelly C. Expression of a Phanerochaete chrysosporium manganese peroxidase gene in the yeast Pichia pastoris. Bio Technol Prog 2003; 19:1403-9; PMID:14524699; http://dx.doi.org/10.1021/bp025781h
  • Ryu K, Kang JH, Wang L, Lee EK. Expression in yeast of secreted lignin peroxidase with improved 2,4-dichlorophenol degradability by DNA shuffling. J Bio Technol 2008; 135:241-6; PMID:18514942; http://dx.doi.org/10.1016/j.jbiotec.2008.04.007
  • Wang W, Wen X. Expression of lignin peroxidase H2 from Phanerochaete chrysosporium by multi-copy recombinant Pichia strain. J Environ Sci (China) 2009; 21:218-22; PMID:19402425; http://dx.doi.org/10.1016/S1001-0742(08)62254-8
  • Jiang F, Kongsaeree P, Charron R, Lajoie C, Xu HW, Scott G, Kelly C. Production and separation of manganese peroxidase from heme amended yeast cultures. Bio Technol Bio Eng 2008; 99:540-9; PMID:17680655; http://dx.doi.org/10.1002/bit.21590
  • Stewart P, Whitwam RE, Kersten PJ, Cullen D, Tien M. Efficient expression of a Phanerochaete chrysosporium manganese peroxidase gene in Aspergillus oryzae. Appl Environ Microbiol 1996; 62:860-4; PMID:8975615
  • Conesa A, van den Hondel CA, Punt PJ. Studies on the production of fungal peroxidases in Aspergillus niger. Appl Environ Microbiol 2000; 66:3016-23; PMID:10877800; http://dx.doi.org/10.1128/AEM.66.7.3016-3023.2000
  • Ruiz-Duenas FJ, Martinez MJ, Martinez AT. Heterologous expression of Pleurotus eryngii peroxidase confirms its ability to oxidize Mn(2+) and different aromatic substrates. Appl Environ Microbiol 1999; 65:4705-7; PMID:10508113
  • Coconi-Linares N, Magana-Ortiz D, Guzman-Ortiz DA, Fernandez F, Loske AM, Gomez-Lim MA. High-yield production of manganese peroxidase, lignin peroxidase, and versatile peroxidase in Phanerochaete chrysosporium. Appl Microbiol Bio Technol 2014; 98:9283-94; PMID:25269601; http://dx.doi.org/10.1007/s00253-014-6105-9
  • Coconi-Linares N, Ortiz-Vazquez E, Fernandez F, Loske AM, Gomez-Lim MA. Recombinant expression of four oxidoreductases in Phanerochaete chrysosporium improves degradation of phenolic and non-phenolic substrates. J Biotechnol 2015; 209:76-84; PMID:26113215; http://dx.doi.org/10.1016/j.jbiotec.2015.06.401
  • Sugano Y, Muramatsu R, Ichiyanagi A, Sato T, Shoda M. DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family: ASP171 replaces the distal histidine of classical peroxidases. J Biol Chem 2007; 282:36652-8; PMID:17928290; http://dx.doi.org/10.1074/jbc.M706996200
  • Sugano Y, Nakano R, Sasaki K, Shoda M. Efficient heterologous expression in Aspergillus oryzae of a unique dye-decolorizing peroxidase, DyP, of Geotrichum candidum Dec 1. Appl Environ Microbiol 2000; 66:1754-8; PMID:10742277; http://dx.doi.org/10.1128/AEM.66.4.1754-1758.2000
  • Sugano Y, Ishii Y, Shoda M. Role of H164 in a unique dye-decolorizing heme peroxidase DyP. Biochem Biophys Res Commun 2004; 322:126-32; PMID:15313183; http://dx.doi.org/10.1016/j.bbrc.2004.07.090
  • Liers C, Pecyna MJ, Kellner H, Worrich A, Zorn H, Steffen KT, Hofrichter M, Ullrich R. Substrate oxidation by dye-decolorizing peroxidases (DyPs) from wood- and litter-degrading agaricomycetes compared to other fungal and plant heme-peroxidases. Appl Microbiol Bio Technol 2013; 97:5839-49; PMID:23111597; http://dx.doi.org/10.1007/s00253-012-4521-2
  • Thomas L, Crawford DL. Cloning of clustered Streptomyces viridosporus T7A lignocellulose catabolism genes encoding peroxidase and endoglucanase and their extracellular expression in Pichia pastoris. Can J Microbiol 1998; 44:364-72; PMID:9674109; http://dx.doi.org/10.1139/w98-010
  • van Bloois E, Torres Pazmino DE, Winter RT, Fraaije MW. A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl Microbiol Bio Technol 2010; 86:1419-30; PMID:19967355; http://dx.doi.org/10.1007/s00253-009-2369-x
  • Rahmanpour R, Rea D, Jamshidi S, Fulop V, Bugg TD. Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds. Arch Bio Chem Biophys 2016; 594:54-60; PMID:26901432; http://dx.doi.org/10.1016/j.abb.2016.02.019
  • Brown ME, Barros T, Chang MC. Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium. ACS Chem Biol 2012; 7:2074-81; PMID:23054399; http://dx.doi.org/10.1021/cb300383y
  • Li J, Liu C, Li B, Yuan H, Yang J, Zheng B. Identification and molecular characterization of a novel DyP-type peroxidase from Pseudomonas aeruginosa PKE117. Appl Biochem Biotechnol 2012; 166:774-85; PMID:22161141; http://dx.doi.org/10.1007/s12010-011-9466-x
  • Ogola HJ, Kamiike T, Hashimoto N, Ashida H, Ishikawa T, Shibata H, Sawa Y. Molecular characterization of a novel peroxidase from the cyanobacterium Anabaena sp. strain PCC 7120. Appl Environ Microbiol 2009; 75:7509-18; PMID:19801472; http://dx.doi.org/10.1128/AEM.01121-09
  • Santos A, Mendes S, Brissos V, Martins LO. New dye-decolorizing peroxidases from Bacillus subtilis and Pseudomonas putida MET94: towards biotechnological applications. Appl Microbiol Biot 2014; 98:2053-65; http://dx.doi.org/10.1007/s00253-013-5041-4
  • Min K, Gong G, Woo HM, Kim Y, Um Y. A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer. Sci Rep 2015; 5:8245; PMID:25650125; http://dx.doi.org/10.1038/srep08245
  • Yu W, Liu W, Huang H, Zheng F, Wang X, Wu Y, Li K, Xie X, Jin Y. Application of a novel alkali-tolerant thermostable DyP-type peroxidase from Saccharomonospora viridis DSM 43017 in biobleaching of eucalyptus kraft pulp. PLoS One 2014; 9:e110319; PMID:25333297; http://dx.doi.org/10.1371/journal.pone.0110319
  • Rahmanpour R, Bugg TD. Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5: Oxidation of Mn(II) and polymeric lignin by Dyp1B. Arch Biochem Biophys 2015; 574:93-8; PMID:25558792; http://dx.doi.org/10.1016/j.abb.2014.12.022
  • Ahmad M, Roberts JN, Hardiman EM, Singh R, Eltis LD, Bugg TD. Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Bio Chemistry-Us 2011; 50:5096-107; http://dx.doi.org/10.1021/bi101892z
  • Roberts JN, Singh R, Grigg JC, Murphy MEP, Bugg TDH, Eltis LD. Characterization of Dye-Decolorizing Peroxidases from Rhodococcus jostii RHA1. Bio Chemistry-Us 2011; 50:5108-19; http://dx.doi.org/10.1021/bi200427h
  • Sainsbury PD, Hardiman EM, Ahmad M, Otani H, Seghezzi N, Eltis LD, Bugg TD. Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem Biol 2013; 8:2151-6; PMID:23898824; http://dx.doi.org/10.1021/cb400505a
  • Baciocchi E, Fabbri C, Lanzalunga O. Lignin peroxidase-catalyzed oxidation of nonphenolic trimeric lignin model compounds: fragmentation reactions in the intermediate radical cations. J Org Chem 2003; 68:9061-9; PMID:14604381; http://dx.doi.org/10.1021/jo035052w
  • Camarero S, Martinez MJ, Martinez AT. Understanding lignin biodegradation for the improved utilization of plant biomass in mod ern biorefineries. Biofuel Bioprod Bior 2014; 8:615-25; http://dx.doi.org/10.1002/bbb.1467
  • Westereng B, Cannella D, Wittrup Agger J, Jorgensen H, Larsen Andersen M, Eijsink VG, Felby C. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Sci Rep 2015; 5:18561; PMID:26686263; http://dx.doi.org/10.1038/srep18561
  • Barta K, Matson TD, Fettig ML, Scott SL, Iretskii AV, Ford PC. Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol. Green Chem 2010; 12:1640-7; http://dx.doi.org/10.1039/c0gc00181c

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.