6,576
Views
65
CrossRef citations to date
0
Altmetric
Commentary

Recent advances in the production of recombinant subunit vaccines in Pichia pastoris

, &
Pages 155-165 | Received 11 Apr 2016, Accepted 13 May 2016, Published online: 31 May 2016

References

  • Balamurugan V, Venkatesan G, Sen A, Annamalai L, Bhanuprakash V, Singh RK. Recombinant protein-based viral disease diagnostics in veterinary medicine. Expert Rev Mol Diagn 2010; 10:731-53; PMID:20843198; http://dx.doi.org/10.1586/erm.10.61
  • Ergun BG, Calik P. Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects. Bio Process Biosyst Eng 2016; 39:1-36; PMID:26497303; http://dx.doi.org/10.1007/s00449-015-1476-6
  • Liu Y, Wu C, Wang J, Mo W, Yu M. Codon optimization, expression, purification, and functional characterization of recombinant human IL-25 in Pichia pastoris. Appl Microbiol Bio Technol 2013; 97:10349-58; http://dx.doi.org/10.1007/s00253-013-5264-4
  • Maccani A, Landes N, Stadlmayr G, Maresch D, Leitner C, Maurer M, Gasser B, Ernst W, Kunert R, Mattanovich D. Pichia pastoris secretes recombinant proteins less efficiently than Chinese hamster ovary cells but allows higher space-time yields for less complex proteins. Bio Technol J 2014; 9:526-37
  • Schiller JT, Lowy DR. Raising expectations for subunit vaccine. J Infect Dis 2015; 211:1373-5; PMID:25420478; http://dx.doi.org/10.1093/infdis/jiu648
  • Wan SW, Lin CF, Wang S, Chen YH, Yeh TM, Liu HS, Anderson R, Lin YS. Current progress in dengue vaccines. J Biomed Sci 2013; 20:37; PMID:23758699; http://dx.doi.org/10.1186/1423-0127-20-37
  • Liljeqvist S, Stahl S. Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J Biotechnol 1999; 73:1-33; PMID:10483112; http://dx.doi.org/10.1016/S0168-1656(99)00107-8
  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity 2010; 33:492-503; PMID:21029960; http://dx.doi.org/10.1016/j.immuni.2010.10.002
  • Lieberman MM, Clements DE, Ogata S, Wang G, Corpuz G, Wong T, Martyak T, Gilson L, Coller BA, Leung J, et al. Preparation and immunogenic properties of a recombinant West Nile subunit vaccine. Vaccine 2007; 25:414-23; PMID:16996661; http://dx.doi.org/10.1016/j.vaccine.2006.08.018
  • Bill RM. Recombinant protein subunit vaccine synthesis in microbes: a role for yeast? J Pharm Pharmacol 2015; 67:319-28; PMID:25556638; http://dx.doi.org/10.1111/jphp.12353
  • Hu F, Li X, Lu J, Mao PH, Jin X, Rao B, et al. A visual method for direct selection of high-producing Pichia pastoris clones. BMC Biotechnol 2011; 11:23; PMID:21418613; http://dx.doi.org/10.1186/1472-6750-11-23
  • Spohner SC, Muller H, Quitmann H, Czermak P. Expression of enzymes for the usage in food and feed industry with Pichia pastoris. J Biotechnol 2015; 202:118-34; PMID:25687104; http://dx.doi.org/10.1016/j.jbiotec.2015.01.027
  • Weinacker D, Rabert C, Zepeda AB, Figueroa CA, Pessoa A, Farias JG. Applications of recombinant Pichia pastoris in the healthcare industry. Braz J Microbiol 2013; 44:1043-8; PMID:24688491; http://dx.doi.org/10.1590/S1517-83822013000400004
  • Celik E, Calik P. Production of recombinant proteins by yeast cells. Bio Technol Adv 2012; 30:1108-18; PMID:21964262; http://dx.doi.org/10.1016/j.biotechadv.2011.09.011
  • Krainer FW, Dietzsch C, Hajek T, Herwig C, Spadiut O, Glieder A. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway. Microb Cell Fact 2012; 11:22; PMID:22330134; http://dx.doi.org/10.1186/1475-2859-11-22
  • Cos O, Ramon R, Montesinos JL, Valero F. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 2006; 5:17; PMID:16600031; http://dx.doi.org/10.1186/1475-2859-5-17
  • Kim SJ, Lee JA, Kim YH, Song BK. Optimization of the functional expression of Coprinus cinereus peroxidase in Pichia pastoris by varying the host and promoter. J Microbiol Biotechnol 2009; 19:966-71; PMID:19809254; http://dx.doi.org/10.4014/jmb.0901.018
  • Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 2000; 24:45-66; PMID:10640598; http://dx.doi.org/10.1111/j.1574-6976.2000.tb00532.x
  • Byrne B. Pichia pastoris as an expression host for membrane protein structural biology. Curr Opin Struct Biol 2015; 32:9-17; PMID:25658849; http://dx.doi.org/10.1016/j.sbi.2015.01.005
  • Wang X, Wang Q, Wang J, Bai P, Shi L, Shen W, Zhou M, Zhou X, Zhang Y, Cai M. Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris. J Biol Chem 2016; 291:6245-61; PMID:26828066; http://dx.doi.org/10.1074/jbc.M115.692053
  • Ahmad M, Hirz M, Pichler H, Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 2014; 98:5301-17; PMID:24743983; http://dx.doi.org/10.1007/s00253-014-5732-5
  • Prielhofer R, Maurer M, Klein J, Wenger J, Kiziak C, Gasser B, Mattanovich D. Induction without methanol: novel regulated promoters enable high-level expression in Pichia pastoris. Microb Cell Fact 2013; 12:5; PMID:23347568; http://dx.doi.org/10.1186/1475-2859-12-5
  • Shen S, Sulter G, Jeffries TW, Cregg JM. A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene 1998; 216:93-102; PMID:9714758; http://dx.doi.org/10.1016/S0378-1119(98)00315-1
  • Resina D, Serrano A, Valero F, Ferrer P. Expression of a Rhizopus oryzae lipase in Pichia pastoris under control of the nitrogen source-regulated formaldehyde dehydrogenase promoter. J Biotechnol 2004; 109:103-13; PMID:15063618; http://dx.doi.org/10.1016/j.jbiotec.2003.10.029
  • Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 1997; 186:37-44; PMID:9047342; http://dx.doi.org/10.1016/S0378-1119(96)00675-0
  • de Almeida JR, de Moraes LM, Torres FA. Molecular characterization of the 3-phosphoglycerate kinase gene (PGK1) from the methylotrophic yeast Pichia pastoris. Yeast 2005; 22:725-37; PMID:16034819; http://dx.doi.org/10.1002/yea.1243
  • Ahn J, Hong J, Lee H, Park M, Lee E, Kim C, Choi E, Jung J, Lee H. Translation elongation factor 1-α gene from Pichia pastoris: molecular cloning, sequence, and use of its promoter. Appl Microbiol Biotechnol 2007; 74:601-8; PMID:17124582; http://dx.doi.org/10.1007/s00253-006-0698-6
  • Damasceno LM, Huang CJ, Batt CA. Protein secretion in Pichia pastoris and advances in protein production. Appl Microbiol Biotechnol 2012; 93:31-9; PMID:22057543; http://dx.doi.org/10.1007/s00253-011-3654-z
  • Andre N, Cherouati N, Prual C, Steffan T, Zeder-Lutz G, Magnin T, Pattus F, Michel H, Wagner R, Reinhart C. Enhancing functional production of G protein-coupled receptors in Pichia pastoris to levels required for structural studies via a single expression screen. Protein Sci 2006; 15:1115-26; PMID:16597836; http://dx.doi.org/10.1110/ps.062098206
  • Abad S, Kitz K, Hormann A, Schreiner U, Hartner FS, Glieder A. Real-time PCR-based determination of gene copy numbers in Pichia pastoris. Bio Technol J 2010; 5:413-20
  • Vogl T, Hartner FS, Glieder A. New opportunities by synthetic biology for biopharmaceutical production in Pichia pastoris. Curr Opin Bio Technol 2013; 24:1094-101; http://dx.doi.org/10.1016/j.copbio.2013.02.024
  • Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Bio Technol Adv 2009; 27:297-306
  • De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouzé P, Van de Peer Y, Callewaert N. Genome sequence of the recombinant protein production host Pichia pastoris. Nat Bio Technol 2009; 27:561-6; http://dx.doi.org/10.1038/nbt.1544
  • Roongsawang N, Puseenam A, Kitikhun S, Sae-Tang K, Harnpicharnchai P, Ohashi T, Fujiyama K, Tirasophon W, Tanapongpipat S. A novel potential signal peptide sequence and overexpression of ER-Resident chaperones enhance heterologous protein secretion in thermotolerant methylotrophic yeast ogataea thermomethanolica. Appl Biochem Biotechnol 2016; 178:710-24; PMID:26519344; http://dx.doi.org/10.1007/s12010-015-1904-8
  • Zhang Y, Teng D, Mao R, Wang X, Xi D, Hu X, Wang J. High expression of a plectasin-derived peptide NZ2114 in Pichia pastoris and its pharmacodynamics, postantibiotic and synergy against Staphylococcus aureus. Appl Microbiol Biotechnol 2014; 98:681-94; PMID:23624708
  • Kaufmann SH, Hussey G, Lambert PH. New vaccines for tuberculosis. Lancet 2010; 375:2110-9; PMID:20488515; http://dx.doi.org/10.1016/S0140-6736(10)60393-5
  • Waheed MT, Sameeullah M, Khan FA, Syed T, Ilahi M, Gottschamel J, Lössl AG. Need of cost-effective vaccines in developing countries: What plant biotechnology can offer? Springerplus 2016; 5:65; PMID:26839758; http://dx.doi.org/10.1186/s40064-016-1713-8
  • Plotkin SA. Vaccines: past, present and future. Nat Med 2005; 11:S5-11; PMID:15812490; http://dx.doi.org/10.1038/nm1209
  • Bill RM. Playing catch-up with Escherichia coli: using yeast to increase success rates in recombinant protein production experiments. Front Microbiol 2014; 5:85; PMID:24634668; http://dx.doi.org/10.3389/fmicb.2014.00085
  • Zhang N, Jiang S, Du L. Current advancements and potential strategies in the development of MERS-CoV vaccines. Expert Rev Vaccines 2014; 13:761-74; PMID:24766432; http://dx.doi.org/10.1586/14760584.2014.912134
  • Oyston P, Robinson K. The current challenges for vaccine development. J Med Microbiol 2012; 61:889-94; PMID:22322337; http://dx.doi.org/10.1099/jmm.0.039180-0
  • Moyle PM, Toth I. Modern subunit vaccines: development, components, and research opportunities. ChemMedChem 2013; 8:360-76; PMID:23316023; http://dx.doi.org/10.1002/cmdc.201200487
  • Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol 2011; 12:509-17; PMID:21739679; http://dx.doi.org/10.1038/ni.2039
  • Black M, Trent A, Tirrell M, Olive C. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert Rev Vaccines 2010; 9:157-73; PMID:20109027; http://dx.doi.org/10.1586/erv.09.160
  • Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, Schlesinger SJ, Steinman RM. Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity. J Intern Med 2012; 271:183-92; PMID:22126373; http://dx.doi.org/10.1111/j.1365-2796.2011.02496.x
  • Cox MM. Recombinant protein vaccines produced in insect cells. Vaccine 2012; 30:1759-66; PMID:22265860; http://dx.doi.org/10.1016/j.vaccine.2012.01.016
  • Roldao A, Mellado MC, Castilho LR, Carrondo MJ, Alves PM. Virus-like particles in vaccine development. Expert Rev Vaccines 2010; 9:1149-76; PMID:20923267; http://dx.doi.org/10.1586/erv.10.115
  • Yamaji H, Konishi E. Production of Japanese encephalitis virus-like particles in insect cells. Bio Engineered 2013; 4:438-42
  • Dong H, Guo HC, Sun SQ. Virus-like particles in picornavirus vaccine development. Appl Microbiol Bio Technol 2014; 98:4321-9; PMID:24647496; http://dx.doi.org/10.1007/s00253-014-5639-1
  • Chackerian B, Lenz P, Lowy DR, Schiller JT. Determinants of autoantibody induction by conjugated papillomavirus virus-like particles. J Immunol 2002; 169:6120-6; PMID:12444114; http://dx.doi.org/10.4049/jimmunol.169.11.6120
  • Keating GM, Noble S. Recombinant hepatitis B vaccine (Engerix-B): a review of its immunogenicity and protective efficacy against hepatitis B. Drugs 2003; 63:1021-51; PMID:12699402; http://dx.doi.org/10.2165/00003495-200363100-00006
  • Bryan JT, Buckland B, Hammond J, Jansen KU. Prevention of cervical cancer: journey to develop the first human papillomavirus virus-like particle vaccine and the next generation vaccine. Curr Opin Chem Biol 2016; 32:34-47; PMID:26994695; http://dx.doi.org/10.1016/j.cbpa.2016.03.001
  • Chroboczek J, Szurgot I, Szolajska E. Virus-like particles as vaccine. Acta Biochim Pol 2014; 61:531-9; PMID:25273564
  • Bohles N, Busch K, Hensel M. Vaccines against human diarrheal pathogens: current status and perspectives. Hum Vaccin Immunother 2014; 10:1522-35; PMID:24861668; http://dx.doi.org/10.4161/hv.29241
  • Foged C. Subunit vaccines of the future: the need for safe, customized and optimized particulate delivery systems. Ther Deliv 2011; 2:1057-77; PMID:22826868; http://dx.doi.org/10.4155/tde.11.68
  • Greek R, Menache A. Systematic reviews of animal models: methodology versus epistemology. Int J Med Sci 2013; 10:206-21; PMID:23372426; http://dx.doi.org/10.7150/ijms.5529
  • Bodewes R, Rimmelzwaan GF, Osterhaus AD. Animal models for the preclinical evaluation of candidate influenza vaccines. Expert Rev Vaccines 2010; 9:59-72; PMID:20021306; http://dx.doi.org/10.1586/erv.09.148
  • Jackson LA, Gaglani MJ, Keyserling HL, Balser J, Bouveret N, Fries L, Treanor JJ. Safety, efficacy, and immunogenicity of an inactivated influenza vaccine in healthy adults: a randomized, placebo-controlled trial over two influenza seasons. BMC Infect Dis 2010; 10:71; PMID:20236548; http://dx.doi.org/10.1186/1471-2334-10-71
  • Ferrer-Miralles N, Domingo-Espin J, Corchero JL, Vazquez E, Villaverde A. Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 2009; 8:17; PMID:19317892; http://dx.doi.org/10.1186/1475-2859-8-17
  • Mattanovich D, Branduardi P, Dato L, Gasser B, Sauer M, Porro D. Recombinant protein production in yeasts. Methods Mol Biol 2012; 824:329-58; PMID:22160907; http://dx.doi.org/10.1007/978-1-61779-433-9_17
  • Sorensen HP. Towards universal systems for recombinant gene expression. Microb Cell Fact 2010; 9:27; PMID:20433754; http://dx.doi.org/10.1186/1475-2859-9-27
  • Rickinson AB. Co-infections, inflammation and oncogenesis: future directions for EBV research. Semin Cancer Biol 2014; 26:99-115; PMID:24751797; http://dx.doi.org/10.1016/j.semcancer.2014.04.004
  • Wang M, Jiang S, Han Z, Zhao B, Wang L, Zhou Z, Wang Y. Expression and immunogenic characterization of recombinant gp350 for developing a subunit vaccine against Epstein-Barr virus. Appl Microbiol Biotechnol 2016; 100:1221-30; PMID:26433969; http://dx.doi.org/10.1007/s00253-015-7027-x
  • Kato K, Sano H, Nagata K, Sugihara H, Kanai K, Kuwamoto S, et al. Synthetic peptides of Epstein-Barr virus-major envelope glycoprotein-350/220 do not prevent infection in a rabbit Epstein-Barr virus infection model. J Vaccines Vaccin 2012; 3:148; http://dx.doi.org/10.4172/2157-7560.1000150
  • Wang M, Jiang S, Liu X, Wang Y. Expression, purification, and immunogenic characterization of Epstein-Barr virus recombinant EBNA1 protein in Pichia pastoris. Appl Microbiol Biotechnol 2013; 97:6251-62; PMID:23685476; http://dx.doi.org/10.1007/s00253-013-4967-x
  • Mayer CE, Geerlof A, Schepers A. Efficient expression and purification of tag-free Epstein-Barr virus EBNA1 protein in Escherichia coli by auto-induction. Protein Expr Purif 2012; 86:7-11; PMID:22944205; http://dx.doi.org/10.1016/j.pep.2012.08.010
  • Wallace D, Canouet V, Garbes P, Wartel TA. Challenges in the clinical development of a dengue vaccine. Curr Opin Virol 2013; 3:352-6; PMID:23747120; http://dx.doi.org/10.1016/j.coviro.2013.05.014
  • Kaushik N, Rohila D, Arora U, Raut R, Lamminmaki U, Khanna N, Batra G. Casamino acids facilitate the secretion of recombinant dengue virus serotype-3 envelope domain III in Pichia pastoris. BMC Biotechnol 2016; 16:12; PMID:26847361; http://dx.doi.org/10.1186/s12896-016-0243-3
  • Peiris JS, de Jong MD, Guan Y. Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev 2007; 20:243-67; PMID:17428885; http://dx.doi.org/10.1128/CMR.00037-06
  • Subathra M, Santhakumar P, Narasu ML, Beevi SS, Lal SK. Evaluation of antibody response in mice against avian influenza A (H5N1) strain neuraminidase expressed in yeast Pichia pastoris. J Biosci 2014; 39:443-51; PMID:24845508; http://dx.doi.org/10.1007/s12038-014-9422-3
  • Kwon WT, Lee WS, Park PJ, Park TK, Kang H. Protective immunity of Pichia pastoris-expressed recombinant envelope protein of Japanese encephalitis virus. J Microbiol Biotechnol 2012; 22:1580-7; PMID:23124351; http://dx.doi.org/10.4014/jmb.1205.05047
  • Liang Z, Wang J. EV71 vaccine, an invaluable gift for children. Clin Transl Immunol 2014; 3:e28; http://dx.doi.org/10.1038/cti.2014.24
  • Wang M, Jiang S, Wang Y. Recombinant VP1 protein expressed in Pichia pastoris induces protective immune responses against EV71 in mice. Biochem Biophys Res Commun 2013; 430:387-93; PMID:23159634; http://dx.doi.org/10.1016/j.bbrc.2012.11.035
  • Tripathi L, Mani S, Raut R, Poddar A, Tyagi P, Arora U, de Silva A, Swaminathan S, Khanna N. Pichia pastoris-expressed dengue 3 envelope-based virus-like particles elicit predominantly domain III-focused high titer neutralizing antibodies. Front Microbiol 2015; 6:1005; PMID:26441930; http://dx.doi.org/10.3389/fmicb.2015.01005
  • Lowy DR. HPV vaccination to prevent cervical cancer and other HPV-associated disease: from basic science to effective interventions. J Clin Invest 2016; 126:5-11; PMID:26727228; http://dx.doi.org/10.1172/JCI85446
  • Bazan SB, de Alencar Muniz Chaves A, Aires KA, Cianciarullo AM, Garcea RL, Ho PL. Expression and characterization of HPV-16 L1 capsid protein in Pichia pastoris. Arch Virol 2009; 154:1609-17; PMID:19756360; http://dx.doi.org/10.1007/s00705-009-0484-8
  • Mariz FC, Coimbra EC, Jesus AL, Nascimento LM, Torres FA, Freitas AC. Development of an IP-Free biotechnology platform for constitutive production of HPV16 L1 capsid protein using the pichia pastoris PGK1 promoter. Biomed Res Int 2015; 2015:594120; PMID:26090426; http://dx.doi.org/10.1155/2015/594120
  • Huang X, Wei H, Wu S, Du Y, Liu L, Su J, Xu Y, Wang H, Li X, Wang Y, et al. Epidemiological and etiological characteristics of hand, foot, and mouth disease in Henan, China, 2008-2013. Sci Rep 2015; 5:8904; PMID:25754970; http://dx.doi.org/10.1038/srep08904
  • Zhang C, Liu Q, Ku Z, Hu Y, Ye X, Zhang Y, Huang Z. Coxsackievirus A16-like particles produced in Pichia pastoris elicit high-titer neutralizing antibodies and confer protection against lethal viral challenge in mice. Antiviral Res 2016; 129:47-51; PMID:26902108; http://dx.doi.org/10.1016/j.antiviral.2016.02.011
  • Zhang C, Ku Z, Liu Q, Wang X, Chen T, Ye X, Li D, Jin X, Huang Z. High-yield production of recombinant virus-like particles of enterovirus 71 in Pichia pastoris and their protective efficacy against oral viral challenge in mice. Vaccine 2015; 33:2335-41; PMID:25820068; http://dx.doi.org/10.1016/j.vaccine.2015.03.034
  • Gurramkonda C, Zahid M, Nemani SK, Adnan A, Gudi SK, Khanna N, Ebensen T, Lünsdorf H, Guzmán CA, Rinas U. Purification of hepatitis B surface antigen virus-like particles from recombinant Pichia pastoris and in vivo analysis of their immunogenic properties. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 940:104-11; PMID:24141044; http://dx.doi.org/10.1016/j.jchromb.2013.09.030
  • Liu L, Yang H, Shin HD, Chen RR, Li J, Du G, Chen J. How to achieve high-level expression of microbial enzymes: strategies and perspectives. Bio Engineered 2013; 4:212-23; PMID:23686280; http://dx.doi.org/10.4161/bioe.24761
  • Li Z, Hong G, Wu Z, Hu B, Xu J, Li L. Optimization of the expression of hepatitis B virus e gene in Pichia pastoris and immunological characterization of the product. J Biotechnol 2008; 138:1-8; PMID:18721834; http://dx.doi.org/10.1016/j.jbiotec.2008.07.1989
  • Athmaram TN, Saraswat S, Singh AK, Rao MK, Gopalan N, Suryanarayana VV, Rao PV. Influence of copy number on the expression levels of pandemic influenza hemagglutinin recombinant protein in methylotrophic yeast Pichia pastoris. Virus Genes 2012; 45:440-51; PMID:22940846; http://dx.doi.org/10.1007/s11262-012-0809-7
  • Yu P, Zhu Q, Chen K, Lv X. Improving the secretory production of the heterologous protein in Pichia pastoris by focusing on protein folding. Appl Bio Chem Bio Technol 2015; 175:535-48
  • Ben Azoun S, Belhaj AE, Gongrich R, Gasser B, Kallel H. Molecular optimization of rabies virus glycoprotein expression in Pichia pastoris. Microb Bio Technol 2016; 9:355-68
  • Ebrahimi SM, Tebianian M, Toghyani H, Memarnejadian A, Attaran HR. Cloning, expression and purification of the influenza A (H9N2) virus M2e antigen and truncated Mycobacterium tuberculosis HSP70 as a fusion protein in Pichia pastoris. Protein Expr Purif 2010; 70:7-12; PMID:19897044; http://dx.doi.org/10.1016/j.pep.2009.11.001
  • Li X, Luo J, Wang S, Shen Y, Qiu Y, Wang X, Deng X, Liu X, Bao W, Liu P, et al. Engineering, expression, and immuno-characterization of recombinant protein comprising multi-neutralization sites of rabies virus glycoprotein. Protein Expr Purif 2010; 70:179-83; PMID:19755161; http://dx.doi.org/10.1016/j.pep.2009.09.005
  • Gasser B, Saloheimo M, Rinas U, Dragosits M, Rodriguez-Carmona E, Baumann K, Giuliani M, Parrilli E, Branduardi P, Lang C, et al. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Fact 2008; 7:11; PMID:18394160; http://dx.doi.org/10.1186/1475-2859-7-11
  • Delic M, Graf AB, Koellensperger G, Haberhauer-Troyer C, Hann S, Mattanovich D, et al. Overexpression of the transcription factor Yap1 modifies intracellular redox conditions and enhances recombinant protein secretion. Microbial Cell 2014; 1:376-86; http://dx.doi.org/10.15698/mic2014.11.173
  • Delic M, Rebnegger C, Wanka F, Puxbaum V, Haberhauer-Troyer C, Hann S, Köllensperger G, Mattanovich D, Gasser B. Oxidative protein folding and unfolded protein response elicit differing redox regulation in endoplasmic reticulum and cytosol of yeast. Free Radic Biol Med 2012; 52:2000-12; PMID:22406321; http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.048
  • Idiris A, Tohda H, Kumagai H, Takegawa K. Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Micro Biol Bio Technol 2010; 86:403-17; http://dx.doi.org/10.1007/s00253-010-2447-0
  • Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM. Heterologous protein production using the Pichia pastoris expression system. Yeast 2005; 22:249-70; PMID:15704221; http://dx.doi.org/10.1002/yea.1208
  • Yang S, Kuang Y, Li H, Liu Y, Hui X, Li P, Jiang Z, Zhou Y, Wang Y, Xu A, et al. Enhanced production of recombinant secretory proteins in Pichia pastoris by optimizing Kex2 P1' site. PLoS One 2013; 8:e75347; PMID:24069404; http://dx.doi.org/10.1371/journal.pone.0075347
  • Gasser B, Prielhofer R, Marx H, Maurer M, Nocon J, Steiger M, Puxbaum V, Sauer M, Mattanovich D. Pichia pastoris: protein production host and model organism for biomedical research. Future Microbiol 2013; 8:191-208; PMID:23374125; http://dx.doi.org/10.2217/fmb.12.133
  • Jacobs PP, Geysens S, Vervecken W, Contreras R, Callewaert N. Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology. Nat Protoc 2009; 4:58-70; PMID:19131957; http://dx.doi.org/10.1038/nprot.2008.213
  • Holmes WJ, Darby RA, Wilks MD, Smith R, Bill RM. Developing a scalable model of recombinant protein yield from Pichia pastoris: the influence of culture conditions, biomass and induction regime. Microb Cell Fact 2009; 8:35; PMID:19570229; http://dx.doi.org/10.1186/1475-2859-8-35

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.