925
Views
7
CrossRef citations to date
0
Altmetric
Research Paper

Improvement in degradability of 58s glass scaffolds by ZnO and β-TCP modification

, , , , &
Pages 342-351 | Received 02 Mar 2016, Published online: 10 Aug 2016

References

  • Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater 2013; 9:4457-86; PMID:22922331; http://dx.doi.org/10.1016/j.actbio.2012.08.023
  • Scarber RE, Salaam AD, Thomas V, Janowski GM, Dean D. Direct sol-gel electrospinning of fibrous bioglass scaffolds for bone tissue engineering. J Biomater Tissue Eng 2013; 3:440-7; http://dx.doi.org/10.1166/jbt.2013.1101
  • Aguiar H, Serra J, González P. Nanostructural transitions in bioactive sol-gel silicate glasses. Int J Appl Ceram Technol 2011; 8:511-22; http://dx.doi.org/10.1111/j.1744-7402.2011.02633.x
  • Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011;32:2757-74; PMID:21292319; http://dx.doi.org/10.1016/j.biomaterials.2011.01.004
  • Cao H, Liu X. Plasma-Sprayed Ceramic Coatings for Osseointegration. Int J Appl Ceram Technol 2013;10:1-10; http://dx.doi.org/10.1111/j.1744-7402.2012.02770.x
  • Bosetti M, Cannas M. The effect of bioactive glasses on bone marrow stromal cells differentiation. Biomaterials 2005;26:3873-9; PMID:15626435; http://dx.doi.org/10.1016/j.biomaterials.2004.09.059
  • Bielby RC, Pryce RS, Hench LL, Polak JM. Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with ionic dissolution products of 58S bioactive sol-gel glass. Tissue Eng 2005;11:479-88; PMID:15869426; http://dx.doi.org/10.1089/ten.2005.11.479
  • Zhu H, Hu C, Zhang F, Feng X, Li J, Liu T, Chen J, Zhang J. Preparation and antibacterial property of silver-containing mesoporous 58S bioactive glass. Mater Sci Eng 2014;42:22-30; PMID:25063087; http://dx.doi.org/10.1016/j.msec.2014.05.004
  • Fu Q, Rahaman MN, Fu H, Liu X. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res A 2010;95:164-71; PMID:20544804; http://dx.doi.org/10.1002/jbm.a.32824
  • Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterial 2006;27:2414-25; PMID:16336997; http://dx.doi.org/10.1016/j.biomaterials.2005.11.025
  • Rezaee A, Rangkooy H, Khavanin A, Jafari AJ. High photocatalytic decomposition of the air pollutant formaldehyde using nano-ZnO on bone char. Environ Chem Lett 2014;12:353-7; http://dx.doi.org/10.1007/s10311-014-0453-7
  • Chou J, Hao J, Kuroda S, Bishop D, Ben-Nissan B, Milthorpe B, Otsuka M. Bone regeneration of rat tibial defect by zinc-tricalcium phosphate (Zn-TCP) synthesized from porous Foraminifera carbonate macrospheres. Mar Drugs 2013;11:5148-58; PMID:24351911; http://dx.doi.org/10.3390/md11125148
  • Carbajal L, Serena S, Caballero A, Saínz MA, Detsch R, Boccaccini AR. Role of ZnO additions on the β/α phase relation in TCP based materials: Phase stability, properties, dissolution and biological response. J Eur Ceram Soc 2014;34:1375-85; http://dx.doi.org/10.1016/j.jeurceramsoc.2013.11.010
  • Ikeuchi M, Ito A, Dohi Y, Ohgushi H, Shimaoka H, Yonemasu K, Tateishi T. Osteogenic differentiation of cultured rat and human bone marrow cells on the surface of zinc-releasing calcium phosphate ceramics. J Biomed Mater Res A 2003;67:1115-22; PMID:14624496; http://dx.doi.org/10.1002/jbm.a.10041
  • Bandyopadhyay A, Withey EA, Moore J, Bose S. Influence of ZnO doping in calcium phosphate ceramics. Mater Sci Eng 2007;27:14-17; http://dx.doi.org/10.1016/j.msec.2005.11.004
  • Eder C, Meissner J, Bretschneider W, Schildböck S, Ogon M. Analysis of a β-TCP bone graft extender explanted during revision surgery after 28 months in vivo. Eur Spine J 2014;23:157-60; PMID:23636843; http://dx.doi.org/10.1007/s00586-013-2802-9
  • Diogo GS, Gaspar VM, Serra IR, Fradique R, Correia IJ. Manufacture of β-TCP/alginate scaffolds through a Fab@ home model for application in bone tissue engineering. Biofabrication 2014;6:025001; PMID:24657988; http://dx.doi.org/10.1088/1758-5082/6/2/025001
  • Jin HB, Oktar FN, Dorozhkin S, Agathopoulos S. Sintering behavior and properties of reinforced hydroxyapatite/TCP biphasic bioceramics with ZnO-whiskers. J Compos Mater 2011;45:1435-45; http://dx.doi.org/10.1177/0021998310383728
  • Yeo A, Wong WJ, Teoh SH. Surface modification of PCL‐TCP scaffolds in rabbit calvaria defects: Evaluation of scaffold degradation profile, biomechanical properties and bone healing patterns. J Biomed Mater Res A 2010;93:1358-67; PMID:19911382
  • Fu Q, Rahaman MN, Bal BS, Brown RF, Day DE. Mechanical and in vitro performance of 13–93 bioactive glass scaffolds prepared by a polymer foam replication technique. Acta Biomater 2008;4:1854-64; PMID:18519173; http://dx.doi.org/10.1016/j.actbio.2008.04.019
  • Ribeiro G, Trommer RM, dos Santos LA, Bergmann CP. Novel method to produce β-TCP scaffolds. Mater Lett 2011;65:275-7; http://dx.doi.org/10.1016/j.matlet.2010.09.066
  • Fielding GA, Bandyopadhyay A, Bose S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dental Mater 2012;28:113-22; PMID:22047943; http://dx.doi.org/10.1016/j.dental.2011.09.010
  • Ma J, Chen CZ, Wang DG, Meng XG, Shi JZ. In vitro degradability and bioactivity of mesoporous CaO-MgO-P2O5-SiO2 glasses synthesized by sol–gel method. J Sol-gel Sci Technol 2010;54:69-76; http://dx.doi.org/10.1007/s10971-010-2159-z
  • Mohandes F, Salavati-Niasari M. In vitro comparative study of pure hydroxyapatite nanorods and novel polyethylene glycol/graphene oxide/hydroxyapatite nanocomposite. J Nanoparticle Res 2014;16:1-12; http://dx.doi.org/10.1007/s11051-014-2604-y
  • Madejová J. FTIR techniques in clay mineral studies. Vib Spectrosc 2003;31:1-10; http://dx.doi.org/10.1016/S0924-2031(02)00065-6
  • Groust JF, Costentin G, Krafft JM, Massiani P. Mechanism and deactivation process of the conversion of methylbutynol on basic faujasite monitored by operando DRIFTS. Phys Chem Chem Phys 2010;12:937-46; PMID:20066379; http://dx.doi.org/10.1039/B919733H
  • Lemos AF, Rocha JHG, Quaresma SSF, Kannan S, Oktar FN, Agathopoulos S, Ferreira JMF. Hydroxyapatite nano-powders produced hydrothermally from nacreous material. J Eur Ceram Soc 2006;26:3639-46; http://dx.doi.org/10.1016/j.jeurceramsoc.2005.12.011
  • Plewinski M, Schickle K, Lindner M, Kirsten A, Weber M, Fischer H. The effect of crystallization of bioactive bioglass 45S5 on apatite formation and degradation. Dental Mater 2013;29:1256-64; PMID:24157243; http://dx.doi.org/10.1016/j.dental.2013.09.016
  • Xiao W, Fu H, Rahaman MN, Liu Y, Bal BS. Hollow hydroxyapatite microspheres: A novel bioactive and osteoconductive carrier for controlled release of bone morphogenetic protein-2 in bone regeneration. Acta Biomater 2013;9:8374-83; PMID:23747325; http://dx.doi.org/10.1016/j.actbio.2013.05.029
  • Pan H, Zhao X, Darvell BW, Lu WW. Apatite-formation ability–Predictor of “bioactivity”? Acta Biomater 2010;6:4181-8; PMID:20493974; http://dx.doi.org/10.1016/j.actbio.2010.05.013
  • Wu C, Ramaswamy Y, Chang J, Woods J, Chen Y, Zreiqat H. The effect of Zn contents on phase composition, chemical stability and cellular bioactivity in Zn-Ca-Si system ceramics. J Biomed Mater Res B 2008;87:346-53; PMID:18464251; http://dx.doi.org/10.1002/jbm.b.31109
  • Jallot E, Nedelec JM, Grimault AS, Chassot E, Grandjean-Laquerriere A, Laquerriere P, Laurent-Maquin D. STEM and EDXS characterisation of physico-chemical reactions at the periphery of sol-gel derived Zn-substituted hydroxyapatites during interactions with biological fluids. Colloids Surf B Biointerfaces 2005;42:205-10; PMID:15893220; http://dx.doi.org/10.1016/j.colsurfb.2005.03.001
  • Haimi S, Gorianc G, Moimas L, Lindroos B, Huhtala H, Räty S, Kuokkanen H, Sándora GK, Schmidb C, Miettinena S, et al. Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater 2009;5:3122-31; PMID:19428318; http://dx.doi.org/10.1016/j.actbio.2009.04.006
  • Shuai C, Li P, Liu J, Peng S. Optimization of TCP/HAP ratio for better properties of calcium phosphate scaffold via selective laser sintering. Mater Charact 2013;77:23-31; ; http://dx.doi.org/10.1016/j.matchar.2012.12.009
  • Feng P, Wei P, Shuai C, Peng S. Characterization of mechanical and biological properties of 3-D scaffolds reinforced with zinc oxide for bone tissue engineering. PloS One 2014;9:e87755; PMID:24498185; http://dx.doi.org/10.1371/journal.pone.0087755
  • Shuai C, Gao C, Nie Y, Hu H, Zhou Y, Peng S. Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system. Nanotechnology 2011;22:285703; PMID:21642759; http://dx.doi.org/10.1088/0957-4484/22/28/285703

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.