1,263
Views
10
CrossRef citations to date
0
Altmetric
Research Paper

Agroinfiltration contributes to VP1 recombinant protein degradation

, , , , &
Pages 459-477 | Received 09 Jun 2016, Accepted 28 Jun 2016, Published online: 18 Aug 2016

References

  • Zhang Y, Li D, Jin X, Huang Z. Fighting Ebola with ZMapp: spotlight on plant-made antibody. Sci China Life Sci 2014; 57:987-8; PMID:25218825; http://dx.doi.org/10.1007/s11427-014-4746-7
  • Bombarely A, Rosli HG, Vrebalov J, Moffett P, Mueller LA, Martin GB. A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol Plant Microbe In 2012; 25:1523-30; http://dx.doi.org/10.1094/MPMI-06-12-0148-TA
  • Goodin MM, Zaitlin D, Naidu RA, Lommel SA. Nicotiana benthamiana: Its history and future as a model for plant-pathogen interactions. Mol Plant Microbe In 2008; 21:1015-26; http://dx.doi.org/10.1094/MPMI-21-8-1015
  • Faino L, de Jonge R, Thomma BP. The transcriptome of Verticillium dahliae-infected Nicotiana benthamiana determined by deep RNA sequencing. Plant Signal Behav 2012; 7:1065; PMID:22899084; http://dx.doi.org/10.4161/psb.21014
  • Abiri R, Valdiani A, Maziah M, Shaharuddin NA, Sahebi M, Yusof Zy, Atabaki N, Talei D. A critical review of the concept of transgenic plants: insights into pharmaceutical biotechnology and molecular farming. Curr Issues Mol Biol 2015; 18:21-42; PMID:25944541
  • Wagner B, Fuchs H, Adhami F, Ma Y, Scheiner O, Breiteneder H. Plant virus expression systems for transient production of recombinant allergens in Nicotiana bentha-miana. Methods 2004; 32:227-34; PMID:14962756; http://dx.doi.org/10.1016/j.ymeth.2003.08.005
  • D'Aoust MA, Lavoie PO, Belles-Isles J, Bechtold N, Martel M, Vézina LP. Transient expression of antibodies in plants using syringe agroinfiltration. Recombinant Proteins From Plants 2009; 483:41-50; http://dx.doi.org/10.1007/978-1-59745-407-0_3
  • Van der Hoorn RA, Laurent F, Roth R, De Wit PJ. Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-Induced and Avr4/Cf-4-induced necrosis. Phytopathol 2000; 13:439-46
  • Outchkourov NS, Rogelj B, Strukelj B, Jongsma MA. Expression of sea anemone equistatin in potato. Effects of plant proteases on heterologous protein production. Plant Physiol 2003; 133:379-90; PMID:12970503; http://dx.doi.org/10.1104/pp.102.017293
  • Donini M, Lombardi R, Lonoce C, Di Carli M, Marusic C, Morea V, Di Micco P. Antibody proteolysis: a common picture emerging from plants. Bioengineered 2015; 6(5):299-302; PMID:26186119; http://dx.doi.org/10.1080/21655979.2015.1067740
  • Miletic S, Simpson DJ, Szymanski CM, Deyholos MK, Menassa R. A plant-produced bacteriophage tailspike protein for the control of Salmonella. Front Plant Sci 2015; 6:1-9; PMID:25653664
  • Faye L, Boulaflous A, Benchabane M, Gomord V, Michaud D. Protein modifications in the plant secretory pathway: Current status and practical implications in molecular pharming. Vaccine 2005; 23:1770-8; PMID:15734039; http://dx.doi.org/10.1016/j.vaccine.2004.11.003
  • Castilho A, Windwarder M, Gattinger P, Mach L, Strasser R, Altmann F, Steinkellner H. Proteolytic and N-Glycan processing of Human α1-Antitrypsin expressed in Nicotiana benthamiana. Plant Physiol 2014; 166:1839-51; PMID:25355867; http://dx.doi.org/10.1104/pp.114.250720
  • Delannoy M, Alves G, Vertommen D, Ma J, Boutry M, Navarre C. Identification of peptidases in Nicotiana tabacum leaf intercellular fluid. Proteomics 2008; 8:2285-98; PMID:18446799; http://dx.doi.org/10.1002/pmic.2007-00507
  • Goulet C, Khalf M, Sainsbury F, D'Aoust MA, Michaud D. A protease activity-depleted environment for heterologous proteins migrating towards the leaf cell apoplast. Plant Biotechnol J 2012; 10:83-94; PMID:21895943; http://dx.doi.org/10.1111/j.1467-7652.2011.00643.x
  • Benchabane M, Goulet C, Rivard D, Faye L, Gomord V, Michaud D. Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnol J 2008; 6:633-48; PMID:18452504; http://dx.doi.org/10.1111/j.1467-7652.2008.00344.x
  • Roberts IN, Caputo C, Criado MV, Funk C. Senescence-associated proteases in plants. Physiol Plant 2012; 145:130-39; PMID:22242903; http://dx.doi.org/10.1111/j.1399-3054.2012.01574.x
  • Goulet C, Goulet C, Goulet MC, Michaud D. 2-DE proteome maps for the leaf apoplast of Nicotiana benthamiana. Proteomics 2010; 10:2536-44; PMID:20422621; http://dx.doi.org/10.1002/pmic.200900382
  • Robert S, Khalf M, Goulet MC, D'Aoust MA, Sainsbury F, Michaud D. Protection of recombinant mammalian antibodies from development-dependent proteolysis in leaves of Nicotiana benthamiana. PloS One 2013; 8:1-9
  • Lallemand J, Bouché F, Desiron C, Stautemas J, De Lemos Esteves F, Périlleux C, Tocquin P. Extracellular peptidase hunting for improvement of protein production in plant cells and roots. Front Plant Sci 2015; 6:1-10; PMID:25653664; http://dx.doi.org/10.3389/fpls.2015.00037
  • Niemer M, Mehofer U, Torres Acosta JA, Verdianz M, Henkel T, Loos A, Strasser R, Maresch D, Rademacher T, Steinkellner H, et al. The human anti-HIV antibodies 2F5, 2G12, and PG9 differ in their susceptibility to proteolytic degradation: Down-regulation of endogenous serine and cysteine proteinase activities could improve antibody production in plant-based expression platforms. Biotechnol J 2014; 9:493-500; PMID:24478053; http://dx.doi.org/10.1002/biot.201300207
  • Veena Jiang H, Doerge R, Gelvin SB. Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J 2003; 35:219-36; PMID:12848827; http://dx.doi.org/10.1046/j.1365-313X.2003.01796.x
  • Pillay P, Kibido T, Plessis M, Vyver C, Beyene G, Vorster BJ, Kunert KJ, Schlüter U. Use of transgenic Oryzacystatin-I-expressing plants enhances recombinant protein production. Appl Biochem Biotechnol 2012; 168:1608-20; PMID:22965305; http://dx.doi.org/10.1007/s12010-012-9882-6
  • Butt TR, Edavettal SC, Hall JP, Mattern MR. SUMO fusion technology for difficult-to-express proteins. Protein Express Purif 2005; 43:1-9; http://dx.doi.org/10.1016/j.pep.2005.03.016
  • Pan L, Zhang Y, Wang Y, Wang B, Wang W, Fang Y, Jiang S, Lv J, Wang W, Sun Y, et al. Foliar extracts from transgenic tomato plants expressing the structural polyprotein, P1-2A, and protease, 3C, from foot-and-mouth disease virus elicit a protective response in guinea pigs. Vet Immunol Immunop 2008; 121:83-90; http://dx.doi.org/10.1016/j.vetimm.2007.08.010
  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat methods 2008; 5:621-8; PMID:18516045; http://dx.doi.org/10.1038/nmeth.1226
  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009; 10:57-63; PMID:19015660; http://dx.doi.org/10.1038/nrg2484
  • Gilroy EM, Hein I, Van Der Hoorn R, Boevink PC, Venter E, McLellan H, Kaffarnik F, Hrubikova K, Shaw J, Holeva M, et al. Involvement of cathepsin B in the plant disease resistance hypersensitive response. Plant J 2007; 52:1-13; PMID:17697096; http://dx.doi.org/10.1111/j.1365-313X.2007.03226.x
  • Gu C, Shabab M, Strasser R, Wolters PJ, Shindo T, Niemer M, Kaschani F, Mach L, van der Hoorn RA. Post-translational regulation and trafficking of the granulin-containing protease RD21 of Arabidopsis thaliana. PloS One 2012; 7:1-11
  • Shindo T, Misas-Villamil JC, Hörger AC, Song J, van der Hoorn RA. A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14. PloS One 2012; 7:1-9; http://dx.doi.org/10.1371/journal.pone.0029317
  • Kinoshita T, Yamada K, Hiraiwa N, Kondo M, Nishimura M, Hara-Nishimura I. Vacuolar processing enzyme is up-regulated in the lytic vacuoles of vegetative tissues during senescence and under various stressed conditions. Plant J 1999; 19:43-53; PMID:10417725; http://dx.doi.org/10.1046/j.1365-313X.1999.00497.x
  • Holwerda BC, Rogers JC. Purification and characterization of aleurain A plant thiol protease functionally homologous to mammalian cathepsin H. Plant Physiol 1992; 99:848-55; PMID:16669011; http://dx.doi.org/10.1104/pp.99.3.848
  • Ueda T, Seo S, Ohashi Y, Hashimoto J. Circadian and senescence-enhanced expression of a tobacco cysteine protease gene. Plant Mol Biol 2000; 44:649-57; PMID:11198425; http://dx.doi.org/10.1023/A:1026546004942
  • Beyene G, Foyer CH, Kunert KJ. Two new cysteine proteinases with specific expression patterns in mature and senescent tobacco (Nicotiana tabacum L.) leaves. J Exp Bot 2006; 57:1431-43; PMID:16551685; http://dx.doi.org/10.1093/jxb/erj123
  • Yamada K, Shimada T, Nishimura M, Hara-Nishimura I. A VPE family supporting various vacuolar functions in plants. Physiol Plant 2005; 123:369-75; http://dx.doi.org/10.1111/j.1399-3054.2005.00464.x
  • Mosolov V, Valueva T. Participation of proteolytic enzymes in the interaction of plants with phytopathogenic microorganisms. Biochemistry (Moscow) 2006; 71:838-45; http://dx.doi.org/10.1134/S0006297906080037
  • Hara-Nishimura I, Hatsugai N, Nakaune S, Kuroyanagi M, Nishimura M. Vacuolar processing enzyme: an executor of plant cell death. Curr Opin Plant Biol 2005; 8:404-8; PMID:15939660; http://dx.doi.org/10.1016/j.pbi.2005.05.016
  • Hara-Nishimura I, Hatsugai N, Nakaune S, Kuroyanagi M, Nishimura M. Vacuolar processing enzyme: an executor of plant cell death. Curr Opin Plant Biol 2005; 8:404-8; PMID:15939660; http://dx.doi.org/10.1016/j.pbi.2005.05.016
  • Müntz K, Blattner FR, Shutov AD. Legumains-a family of asparagine-specific cysteine endopeptidases involved in propolypeptide processing and protein breakdown in plants. J Plant Physiol 2002; 159:1281-93; http://dx.doi.org/10.1078/0176-1617-00853
  • Hatsugai N, Kuroyanagi M, Nishimura M, Hara-Nishimura I. A cellular suicide strategy of plants: vacuole-mediated cell death. Apoptosis 2006; 11:905-11; PMID:16547592; http://dx.doi.org/10.1007/s10495-006-6601-1
  • Pillay P. Expression of the VP1 antigen from foot-and-mouth disease virus in a bacterial and plant-based expression system. Plant Sciences. South Africa: University of Pretoria, 2012:149
  • Crowe JH. The QIA expressionist. Chatsworth, CA 1992
  • Arakawa T, Chong DK, Merritt JL, Langridge WH. Expression of cholera toxin B subunit oligomers in transgenic potato plants. Transgenic Res 1997; 6:403-13; PMID:9423288; http://dx.doi.org/10.1023/A:1018487401810
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680-5; PMID:5432063; http://dx.doi.org/10.1038/227680a0
  • Schechter I, Berger A. On the size of the active site in proteases. I. Papain. Biochem Bioph Res Co 1967; 27:157-62; http://dx.doi.org/10.1016/S0006-291X(67)80055-X
  • Schechter I, Berger A. On the active site of proteases. III. Mapping the active site of papain; specific peptide inhibitors of papain. Biochem Bioph Res Co 1968; 32:898-902; http://dx.doi.org/10.1016/0006-291X(68)90326-4
  • Choe Y, Leonetti F, Greenbaum DC, Lecaille F, Bogyo M, Brömme D, Ellman JA, Craik CS. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem 2006; 281:12824-32; PMID:16520377; http://dx.doi.org/10.1074/jbc.M513331200
  • Guncar G, Podobnik M, Pungercar J, Strukelj B, Turk V, Turk D. Crystal structure of porcine cathepsin H determined at 2.1 Å resolution: location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function. Structure 1998; 6:51-61; PMID:9493267; http://dx.doi.org/10.1016/S0969-2126(98)00007-0
  • Mathieu MA, Bogyo M, Caffrey CR, Choe Y, Lee J, Chapman H, Sajid M, Craik CS, McKerrow JH. Substrate specificity of schistosome versus human legumain determined by P1-P3 peptide libraries. Mol Biochem Parasitol 2002; 121:99-105; PMID:11985866; http://dx.doi.org/10.1016/S0166-6851(02)00026-9
  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res 2000; 28:235-42; PMID:10592235; http://dx.doi.org/10.1093/nar/28.1.235
  • Logan D, Abu-Ghazaleh R, Blakemore W, Curry S, Jackson T, King A, Lea S, Lewis R, Newman J, Parry N, et al. Structure of a major immunogenic site on foot-and-mouth disease virus. Nature 1993; 362:566-8; PMID:8385272; http://dx.doi.org/10.1038/362566a0
  • Karplus PA, Schulz GE. Refined structure of glutathione reductase at 1.54 Å resolution. J Mol Biol 1987; 195:701-29; PMID:3656429; http://dx.doi.org/10.1016/0022-2836(87)90191-4
  • Kamphuis IG, Kalk K, Swarte M, Drenth J. Structure of papain refined at 1.65 Å resolution. J Mol Biol 1984; 179:233-56; PMID:6502713; http://dx.doi.org/10.1016/0022-2836(84)90467-4
  • Leiros HKS, Brandsdal BO, Andersen OA, Os V, Leiros I, Helland R, Otlewski J, Willassen NP, Smalås AO. Trypsin specificity as elucidated by LIE calculations, X-ray structures, and association constant measurements. Protein Sci 2004; 13:1056-70; PMID:15044735; http://dx.doi.org/10.1110/ps.03498604
  • Pierce BG, Wiehe K, Hwang H, Kim B-H, Vreven T, Weng Z. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 2014; 30:1771-3; PMID:24532726; http://dx.doi.org/10.1093/bioinformatics/btu097
  • Chen R, Li L, Weng Z. ZDOCK: An initial-stage protein-docking algorithm. Proteins: Struct Funct Bioinf 2003; 52:80-7; http://dx.doi.org/10.1002/prot.10389
  • MacRae E. Extraction of plant RNA. Methods Mol Biol. Protocols for Nucleic Acid Analysis by Nonradioactive Probes: Springer 2007; 353:15-24
  • Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 2010; 11:1-13; http://dx.doi.org/10.1186/gb-2010-11-8-r86
  • Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res 2005; 15:1451-5; PMID:16169926; http://dx.doi.org/10.1101/gr.4086505
  • Blankenberg D, Kuster GV, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J. Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol. 2010 Jan; Chapter 19:Unit 19.10.1-21. http://dx.doi.org/10.1002/0471142727.mb1910s89
  • Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, Nekrutenko A. Manipulation of FASTQ data with Galaxy. Bioinformatics 2010; 26:1783-5; PMID:20562416; http://dx.doi.org/10.1093/bioinformatics/btq281
  • Knapp S, Chase MW, Clarkson JJ. Nomenclatural changes and a new sectional classification in Nicotiana (Solanaceae). Taxon 2004; 53:73-82; http://dx.doi.org/10.2307/4135490
  • Bombarely A, Menda N, Tecle IY, Buels RM, Strickler S, Fischer-York T, Pujar A, Leto J, Gosselin J, Mueller LA. The Sol Genomics Network (solgenomics. net): growing tomatoes using Perl. Nucleic Acids Res 2011; 39:D1149-D55; PMID:20935049; http://dx.doi.org/10.1093/nar/gkq866
  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013; 14:1-13; http://dx.doi.org/10.1186/gb-2013-14-1-r1
  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnol 2010; 28:511-5; http://dx.doi.org/10.1038/nbt.1621
  • Rawlings ND, Waller M, Barrett AJ, Bateman A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 2013; 42:D503-D9; PMID:24157837; http://dx.doi.org/10.1093/nar/gkt953
  • Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, et al. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 2012; 40:D1202-D10; PMID:22140109; http://dx.doi.org/10.1093/nar/gkr1090
  • Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression pat-terns. Proc Natl Acad Sci USA 1998; 95:14863-8; PMID:9843981; http://dx.doi.org/10.1073/pnas.95.25.14863
  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005; 21:3674-6; PMID:16081474; http://dx.doi.org/10.1093/bioinformatics/bti610
  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389-402; PMID:9254694; http://dx.doi.org/10.1093/nar/25.17.3389
  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009; 55:611-22; PMID:19246619; http://dx.doi.org/10.1373/clinchem.2008.112797
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001; 25:402-8; PMID:11846609; http://dx.doi.org/10.1006/meth.2001.1262

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.