5,629
Views
55
CrossRef citations to date
0
Altmetric
Review

The evolution of recombinant thrombolytics: Current status and future directions

&
Pages 331-358 | Received 08 Aug 2016, Accepted 22 Aug 2016, Published online: 01 Nov 2016

References

  • Banerjee A, Chisti Y, Banerjee UC. Streptokinase–a clinically useful thrombolytic agent. Biotechnol Adv 2004; 22(4):287-307; PMID:14697452; https://doi.org/10.1016/j.biotechadv.2003.09.004
  • Global status report on non-communicable diseases, 2014. World Health Organization; http://www.who.int/cardiovascular_diseases/en/
  • Esmon CT. Basic mechanisms and pathogenesis of venous thrombosis. Blood Rev 2009; 23(5):225-9; PMID:19683659; https://doi.org/10.1016/j.blre.2009.07.002
  • Kotb E. The biotechnological potential of fibrinolytic enzymes in the dissolution of endogenous blood thrombi. Biotechnol Prog 2014; 30(3):656-72; PMID:24799449; https://doi.org/10.1002/btpr.1918
  • US Food and Drug Administration home page. www.fda.gov. Accessed 13 October 2016.
  • Kotb E. Activity assessment of microbial fibrinolytic enzymes. Appl Microbiol Biotechnol 2013; 97(15):6647-65; PMID:23812278; https://doi.org/10.1007/s00253-013-5052-1
  • Mihara H, Sumi H, Yoneta T, Mizumoto H, Ikeda R, Seiki M, Maruyama M. A novel fibrinolytic enzyme extracted from the earthworm, Lumbricus rubellus. Jpn J Physiol 1991; 41(3):461-72; PMID:1960890; https://doi.org/10.2170/jjphysiol.41.461
  • Kratzschmar J, Haendler B, Langer G, Boidol W, Bringmann P, Alagon A, Donner P, Schleuning WD. The plasminogen activator family from the salivary gland of the vampire bat Desmodus rotundus: cloning and expression. Gene 1991; 105(2):229-37; PMID:1937019
  • Gao R, Zhang Y, Meng QX, Lee WH, Li DS, Xiong YL, Wang WY. Characterization of three fibrinogenolytic enzymes from Chinese green tree viper (Trimeresurus stejnegeri) venom. Toxicon 1998; 36(3):457-67; PMID:9637365; https://doi.org/10.1016/S0041-0101(97)00150-5
  • Islam MA, Alam F, Khalil MI, Sasongko TH, Gan SH. Natural Products Towards the Discovery of Potential Future Antithrombotic Drugs. Curr Pharm Des 2016; 22(20):2926-46; PMID:26951101
  • Dahlback B. Blood coagulation. Lancet 2000; 355(9215):1627-32; PMID:10821379; https://doi.org/10.1016/S0140-6736(00)02225-X
  • Smith SA, Travers RJ, Morrissey JH. How it all starts: Initiation of the clotting cascade. Crit Rev Biochem Mol Biol 2015; 50(4):326-36; PMID:26018600; https://doi.org/10.3109/10409238.2015.1050550
  • Renne T, Schmaier AH, Nickel KF, Blomback M, Maas C. In vivo roles of factor XII. Blood 2012; 120(22):4296-303; PMID:22993391; https://doi.org/10.1182/blood-2012-07-292094
  • Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Rev 2015; 29(1):17-24; PMID:25294122; https://doi.org/10.1016/j.blre.2014.09.003
  • Castellino FJ, Ploplis VA. Structure and function of the plasminogen/plasmin system. Thromb Haemost 2005; 93(4):647-54; PMID:15841308; https://doi.org/10.1160/TH04-12-0842
  • Marder VJ, Novokhatny V. Direct fibrinolytic agents: biochemical attributes, preclinical foundation and clinical potential. J Thromb Haemost 2010; 8(3):433-44; PMID:19943877; https://doi.org/10.1111/j.1538-7836.2009.03701.x
  • Kunamneni A, Abdelghani TT, Ellaiah P. Streptokinase–the drug of choice for thrombolytic therapy. J Thromb Thrombolysis 2007; 23(1):9-23; PMID:17111203; https://doi.org/10.1007/s11239-006-9011-x
  • Irigoyen JP, Munoz-Canoves P, Montero L, Koziczak M, Nagamine Y. The plasminogen activator system: biology and regulation. Cell Mol Life Sci 1999; 56(1-2):104-32; PMID:11213252
  • Tennent GA, Brennan SO, Stangou AJ, O'Grady J, Hawkins PN, Pepys MB. Human plasma fibrinogen is synthesized in the liver. Blood 2007; 109(5):1971-4; PMID:17082318; https://doi.org/10.1182/blood-2006-08-040956
  • Kant JA, Fornace AJ Jr, Saxe D, Simon MI, McBride OW, Crabtree GR. Evolution and organization of the fibrinogen locus on chromosome 4: gene duplication accompanied by transposition and inversion. Proc Natl Acad Sci U S A 1985; 82(8):2344-8; PMID:2986113
  • Mosesson MW, Siebenlist KR, Meh DA. The structure and biological features of fibrinogen and fibrin. Ann N Y Acad Sci 2001;936:11-30; PMID:11460466; https://doi.org/10.1111/j.1749-6632.2001.tb03491.x
  • Gaffney PJ. Structure of fibrinogen and degradation products of fibrinogen and fibrin. Br Med Bull 1977; 33(3):245-51; PMID:143980
  • Flemmig M, Melzig MF. Serine-proteases as plasminogen activators in terms of fibrinolysis. J Pharm Pharmacol 2012; 64(8):1025-39; PMID:22775207; https://doi.org/10.1111/j.2042-7158.2012.01457.x
  • Sikri N, Bardia A. A history of streptokinase use in acute myocardial infarction. Tex Heart Inst J 2007; 34(3):318-27; PMID:17948083
  • Parrado J, Conejero-Lara F, Smith RA, Marshall JM, Ponting CP, Dobson CM. The domain organization of streptokinase: nuclear magnetic resonance, circular dichroism, and functional characterization of proteolytic fragments. Protein Sci 1996; 5(4):693-704; PMID:8845759; https://doi.org/10.1002/pro.5560050414
  • Yadav S, Sahni G. Probing the primary structural determinants of streptokinase inter-domain linkers by site-specific substitution and deletion mutagenesis. Biochim Biophys Acta 2010; 1804(9):1730-7; PMID:20417732; https://doi.org/10.1016/j.bbapap.2010.04.003
  • Teuten AJ, Broadhurst RW, Smith RA, Dobson CM. Characterization of structural and folding properties of streptokinase by n.m.r. spectroscopy. Biochem J 1993; 290 Pt 2):313-9; PMID:8452517; https://doi.org/10.1042/bj2900313
  • Welfle K, Pfeil W, Misselwitz R, Welfle H, Gerlach D. Conformational properties of streptokinase–differential scanning calorimetric investigations. Int J Biol Macromol 1992; 14(1):19-22; PMID:1596467
  • Boxrud PD, Bock PE. Streptokinase binds preferentially to the extended conformation of plasminogen through lysine binding site and catalytic domain interactions. Biochemistry 2000; 39(45):13974-81; PMID:11076540; https://doi.org/10.1021/bi000594i
  • Nihalani D, Sahni G. Streptokinase contains two independent plasminogen-binding sites. Biochem Biophys Res Commun 1995; 217(3):1245-54; PMID:8554583; https://doi.org/10.1006/bbrc.1995.2902
  • Joshi KK, Nanda JS, Kumar P, Sahni G. Substrate kringle-mediated catalysis by the streptokinase-plasmin activator complex: critical contribution of kringle-4 revealed by the mutagenesis approaches. Biochim Biophys Acta 2012; 1824(2):326-33; PMID:22056293; https://doi.org/10.1016/j.bbapap.2011.10.010
  • Aneja R, Datt M, Yadav S, Sahni G. Multiple exosites distributed across the three domains of streptokinase co-operate to generate high catalytic rates in the streptokinase-plasmin activator complex. Biochemistry 2013; 52(49):8957-68; PMID:23919427; https://doi.org/10.1021/bi400142s
  • Shi GY, Chang BI, Su SW, Young KC, Wu DH, Chang LC, Tsai YS, Wu HL. Preparation of a novel streptokinase mutant with improved stability. Thromb Haemost 1998; 79(5):992-7; PMID:9609235
  • Wu XC, Ye R, Duan Y, Wong SL. Engineering of plasmin-resistant forms of streptokinase and their production in Bacillus subtilis: streptokinase with longer functional half-life. Appl Environ Microbiol 1998; 64(3):824-9; PMID:9501422
  • Pratap J, Rajamohan G, Dikshit KL. Characteristics of glycosylated streptokinase secreted from Pichia pastoris: enhanced resistance of SK to proteolysis by glycosylation. Appl Microbiol Biotechnol 2000; 53(4):469-75; PMID:10803905; https://doi.org/10.1007/s002530051643
  • Sawhney P, Katare K, Sahni G. PEGylation of Truncated Streptokinase Leads to Formulation of a Useful Drug with Ameliorated Attributes. PLoS One 2016; 11(5):e0155831; PMID:27192220; https://doi.org/10.1371/journal.pone.0155831
  • Torrens I, Ojalvo AG, Seralena A, Hayes O, de la Fuente J. A mutant streptokinase lacking the C-terminal 42 amino acids is less immunogenic. Immunol Lett 1999; 70(3):213-8; PMID:10656677; https://doi.org/10.1016/S0165-2478(99)00151-0
  • Ramalingam S, Gautam P, Mukherjee KJ, Jayaraman G. Effects of post-induction feed strategies on secretory production of recombinant streptokinase in Escherichia coli. Biochem Eng J 2007; 33(1):34-41; https://doi.org/10.1016/j.bej.2006.09.019
  • Adivitiya, Dagar VK, Devi N, Khasa YP. High level production of active streptokinase in Pichia pastoris fed-batch culture. Int J Biol Macromol 2016;83:50-60; PMID:26631635; https://doi.org/10.1016/j.ijbiomac.2015.11.062
  • Rovelli F, De Vita C, Feruglio GA, Lotto A, Selvini A, Tognoni G. GISSI trial: early results and late follow-up. Gruppo Italiano per la Sperimentazione della Streptochinasi nell'Infarto Miocardico. J Am Coll Cardiol 1987; 10(5 Suppl B):33B-39B; PMID:3312371; https://doi.org/10.1016/S0735-1097(87)80426-6
  • Roychoudhury PK, Khaparde SS, Mattiasson B, Kumar A. Synthesis, regulation and production of urokinase using mammalian cell culture: a comprehensive review. Biotechnol Adv 2006; 24(5):514-28; PMID:16822639; https://doi.org/10.1016/j.biotechadv.2006.05.002
  • Bansal V, Roychoudhury PK. Production and purification of urokinase: a comprehensive review. Protein Expr Purif 2006; 45(1):1-14; PMID:16055345; https://doi.org/10.1016/j.pep.2005.06.009
  • Collen D, Lijnen HR. Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 1991; 78(12):3114-24; PMID:1742478
  • Nelles L, Lijnen HR, Collen D, Holmes WE. Characterization of recombinant human single chain urokinase-type plasminogen activator mutants produced by site-specific mutagenesis of lysine 158. J Biol Chem 1987; 262(12):5682-9; PMID:3106341
  • Nelles L, Lijnen HR, Collen D, Holmes WE. Characterization of a fusion protein consisting of amino acids 1 to 263 of tissue-type plasminogen activator and amino acids 144 to 411 of urokinase-type plasminogen activator. J Biol Chem 1987; 262(22):10855-62; PMID:2956260
  • Hiramatsu R, Horinouchi S, Beppu T. Isolation and characterization of human pro-urokinase and its mutants accumulated within the yeast secretory pathway. Gene 1991; 99(2):235-41; PMID:1902432
  • Wang P, Zhang J, Sun Z, Chen Y, Liu JN. Glycosylation of prourokinase produced by Pichia pastoris impairs enzymatic activity but not secretion. Protein Expr Purif 2000; 20(2):179-85; PMID:11049742; https://doi.org/10.1006/prep.2000.1310
  • Booyse FM, Lin PH, Traylor M, Bruce R. Purification and properties of a single-chain urokinase-type plasminogen activator form produced by subcultured human umbilical vein endothelial cells. J Biol Chem 1988; 263(29):15139-45; PMID:3170576
  • Avgerinos GC, Drapeau D, Socolow JS, Mao JI, Hsiao K, Broeze RJ. Spin filter perfusion system for high density cell culture: production of recombinant urinary type plasminogen activator in CHO cells. Biotechnology (N Y) 1990; 8(1):54-8; PMID:1367426
  • Urokinase pulmonary embolism trial. Phase 1 results: a cooperative study. JAMA 1970; 214(12):2163-72; PMID:5536580
  • Bell WR, Simon TL, Stengle JM, Sherry S. The urokinase-streptokinase pulmonary embolism trial (phase II) results. Circulation 1974; 50(6):1070-1; PMID:4430106; https://doi.org/10.1161/01.CIR.50.6.1070
  • Sherry S. Pharmacology of anistreplase. Clin Cardiol 1990; (Suppl 5):V3-10; PMID:2182238
  • Munger MA, Forrence EA. Anistreplase: a new thrombolytic for the treatment of acute myocardial infarction. Clin Pharm 1990; 9(7):530-40; PMID:2198125
  • Rawles JM. Quantification of the benefit of earlier thrombolytic therapy: five-year results of the Grampian Region Early Anistreplase Trial (GREAT). J Am Coll Cardiol 1997; 30(5):1181-6; PMID:9350912; https://doi.org/10.1016/S0735-1097(97)00299-4
  • ISIS-3 (Third International Study of Infarct Survival) Collaborative Group. ISIS-3: a randomised comparison of streptokinase vs tissue plasminogen activator vs anistreplase and of aspirin plus heparin vs aspirin alone among 41,299 cases of suspected acute myocardial infarction. Lancet 1992; 339(8796):753-70; PMID:1347801
  • Moser M, Bode C. Pharmacology and clinical trial results of saruplase (scuPA) in acute myocardial infarction. Expert Opin Investig Drugs 1999; 8(3):329-35; PMID:15992082; https://doi.org/10.1517/13543784.8.3.329
  • del Zoppo GJ, Higashida RT, Furlan AJ, Pessin MS, Rowley HA, Gent M. PROACT: a phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke. PROACT Investigators. Prolyse in Acute Cerebral Thromboembolism. Stroke 1998; 29(1):4-11; PMID:9445320; https://doi.org/10.1161/01.STR.29.1.4
  • Furlan A, Higashida R, Wechsler L, Gent M, Rowley H, Kase C, Pessin M, Ahuja A, Callahan F, Clark WM, et al. Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in Acute Cerebral Thromboembolism. JAMA 1999; 282(21):2003-11; PMID:10591382; https://doi.org/10.1001/jama.282.21.2003
  • Tebbe U, Michels R, Adgey J, Boland J, Caspi A, Charbonnier B, Windeler J, Barth H, Groves R, Hopkins GR, et al. Randomized, double-blind study comparing saruplase with streptokinase therapy in acute myocardial infarction: the COMPASS Equivalence Trial. Comparison Trial of Saruplase and Streptokinase (COMASS) Investigators. J Am Coll Cardiol 1998; 31(3):487-93; PMID:9502624; https://doi.org/10.1016/S0735-1097(97)00553-6
  • Vermeer F, Bosl I, Meyer J, Bar F, Charbonnier B, Windeler J, Barth H. Saruplase is a safe and effective thrombolytic agent; observations in 1,698 patients: results of the PASS study. Practical Applications of Saruplase Study. J Thromb Thrombolysis 1999; 8(2):143-50; PMID:10436145
  • Bar FW, Meyer J, Vermeer F, Michels R, Charbonnier B, Haerten K, Spiecker M, Macaya C, Hanssen M, Heras M, et al. Comparison of saruplase and alteplase in acute myocardial infarction. SESAM Study Group. The Study in Europe with Saruplase and Alteplase in Myocardial Infarction. Am J Cardiol 1997; 79(6):727-32; PMID:9070549; https://doi.org/10.1016/S0002-9149(97)89274-0
  • Tebbe U, Windeler J, Boesl I, Hoffmann H, Wojcik J, Ashmawy M, Rüdiger Schwarz E, von Loewis P, Rosemeyer P, Hopkins G, et al. Thrombolysis with recombinant unglycosylated single-chain urokinase-type plasminogen activator (saruplase) in acute myocardial infarction: influence of heparin on early patency rate (LIMITS study). Liquemin in Myocardial Infarction During Thrombolysis With Saruplase. J Am Coll Cardiol 1995; 26(2):365-73; PMID:7608436
  • Spiecker M, Windeler J, Vermeer F, Michels R, Seabra-Gomes R, vom Dahl J, Kerber S, Verheugt FW, Westerhof PW, Bar FW, et al. Thrombolysis with saruplase versus streptokinase in acute myocardial infarction: five-year results of the PRIMI trial. Am Heart J 1999; 138(3 Pt 1):518-24; PMID:10467203
  • Collen D, Lijnen HR. The tissue-type plasminogen activator story. Arterioscler Thromb Vasc Biol 2009; 29(8):1151-5; https://doi.org/10.1161/ATVBAHA.108.179655
  • Rijken DC, Wijngaards G, Zaal-de Jong M, Welbergen J. Purification and partial characterization of plasminogen activator from human uterine tissue. Biochim Biophys Acta 1979; 580(1):140-53; PMID:121055
  • Rijken DC, Collen D. Purification and characterization of the plasminogen activator secreted by human melanoma cells in culture. J Biol Chem 1981; 256(13):7035-41; PMID:6787058
  • Pennica D, Holmes WE, Kohr WJ, Harkins RN, Vehar GA, Ward CA, Bennett WF, Yelverton E, Seeburg PH, Heyneker HL, et al. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 1983; 301(5897):214-21; PMID:6337343
  • Collen D, Stassen JM, Marafino BJ Jr, Builder S, De Cock F, Ogez J, Tajiri D, Pennica D, Bennett WF, Salwa J, et al. Biological properties of human tissue-type plasminogen activator obtained by expression of recombinant DNA in mammalian cells. J Pharmacol Exp Ther 1984; 231(1):146-52; PMID:6541693
  • Majidzadeh-A K, Khalaj V, Fatemeh D, Mahdi H, Farzaneh B, Ahmad A, Mahboudi F. Cloning and expression of functional full-length human tissue plasminogen activator in Pichia pastoris. Appl Biochem Biotechnol 2010; 162(7):2037-48; PMID:20455033; https://doi.org/10.1007/s12010-010-8979-z
  • Collen D, Lijnen HR. Tissue-type plasminogen activator: a historical perspective and personal account. J Thromb Haemost 2004; 2(4):541-6; PMID:15102005; https://doi.org/10.1111/j.1538-7933.2004.00645.x
  • Larsen GR, Metzger M, Henson K, Blue Y, Horgan P. Pharmacokinetic and distribution analysis of variant forms of tissue-type plasminogen activator with prolonged clearance in rat. Blood 1989; 73(7):1842-50; PMID:2496774
  • Lijnen HR, Collen D. Strategies for the improvement of thrombolytic agents. Thromb Haemost 1991; 66(1):88-110; PMID:1926054
  • Wahlgren N, Ahmed N, Dávalos A, Ford GA, Grond M, Hacke W, Hennerici MG, Kaste M, Kuelkens S, Larrue V, et al. Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST): an observational study. Lancet 2007; 369(9558):275-82; PMID:17258667; https://doi.org/10.1016/S0140-6736(07)60149-4
  • Davis SM, Donnan GA, Parsons MW, Levi C, Butcher KS, Peeters A, Barber PA, Bladin C, De Silva DA, Byrnes G, et al. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol 2008; 7(4):299-309; PMID:18296121; https://doi.org/10.1016/S1474-4422(08)70044-9
  • GISSI-2: a factorial randomised trial of alteplase versus streptokinase and heparin versus no heparin among 12,490 patients with acute myocardial infarction. Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico. Lancet 1990; 336(8707):65-71; PMID:1975321
  • Neuhaus KL, Feuerer W, Jeep-Tebbe S, Niederer W, Vogt A, Tebbe U. Improved thrombolysis with a modified dose regimen of recombinant tissue-type plasminogen activator. J Am Coll Cardiol 1989; 14(6):1566-9; PMID:2509531; https://doi.org/10.1016/0735-1097(89)90399-9
  • Neuhaus KL, von Essen R, Tebbe U, Vogt A, Roth M, Riess M, Niederer W, Forycki F, Wirtzfeld A, Maeurer W, et al. Improved thrombolysis in acute myocardial infarction with front-loaded administration of alteplase: results of the rt-PA-APSAC patency study (TAPS). J Am Coll Cardiol 1992; 19(5):885-91; PMID:1552106
  • The GUSTO investigators. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N Engl J Med 1993; 329(10):673-82; PMID:8204123; https://doi.org/10.1056/NEJM199309023291001
  • The GUSTO Angiographic Investigators. The effects of tissue plasminogen activator, streptokinase, or both on coronary-artery patency, ventricular function, and survival after acute myocardial infarction. N Engl J Med 1993; 329(22):16 15-22; PMID:8232430; https://doi.org/10.1056/NEJM199311253292204
  • The Continuous Infusion versus Double-Bolus Administration of Alteplase (COBALT) Investigators. A comparison of continuous infusion of alteplase with double-bolus administration for acute myocardial infarction. N Engl J Med 1997; 337(16):1124-30; PMID:9340504; https://doi.org/10.1056/NEJM199710163371604
  • Kohnert U, Rudolph R, Verheijen JH, Weening-Verhoeff EJ, Stern A, Opitz U, Martin U, Lill H, Prinz H, Lechner M, et al. Biochemical properties of the kringle 2 and protease domains are maintained in the refolded t-PA deletion variant BM 06.022. Protein Eng 1992; 5(1):93-100; PMID:1321420; https://doi.org/10.1093/protein/5.1.93
  • Sturzebecher J, Neumann U, Kohnert U, Kresse GB, Fischer S. Mapping of the catalytic site of CHO-t-PA and the t-PA variant BM 06.022 by synthetic inhibitors and substrates. Protein Sci 1992; 1(8):1007-1013; PMID:1304379; https://doi.org/10.1002/pro.5560010806
  • Martin U, von Mollendorff E, Akpan W, Kientsch-Engel R, Kaufmann B, Neugebauer G. Pharmacokinetic and hemostatic properties of the recombinant plasminogen activator bm 06.022 in healthy volunteers. Thromb Haemost 1991; 66(5):569-574; PMID:1725068
  • Martin U, von Mollendorff E, Akpan W, Kientsch-Engel R, Kaufmann B, Neugenauer G. Dose-ranging study of the novel recombinant plasminogen activator BM 06.022 in healthy volunteers. Clin Pharmacol Ther 1991; 50(4):429-436; PMID:1914379; https://doi.org/10.1038/clpt.1991.160
  • Smalling RW, Bode C, Kalbfleisch J, Sen S, Limbourg P, Forycki F, Habib G, Feldman R, Hohnloser S, Seals A. More rapid, complete, and stable coronary thrombolysis with bolus administration of reteplase compared with alteplase infusion in acute myocardial infarction. RAPID Investigators. Circulation 1995; 91(11):2725-2732; PMID:7758177; https://doi.org/10.1161/01.CIR.91.11.2725
  • Bode C, Smalling RW, Berg G, Burnett C, Lorch G, Kalbfleisch JM, Chernoff R, Christie LG, Feldman RL, Seals AA, et al. Randomized comparison of coronary thrombolysis achieved with double-bolus reteplase (recombinant plasminogen activator) and front-loaded, accelerated alteplase (recombinant tissue plasminogen activator) in patients with acute myocardial infarction. The RAPID II Investigators. Circulation 1996; 94(5):891-898; PMID:8790022; https://doi.org/10.1161/01.CIR.94.5.891
  • International Joint Efficacy Comparison of Thrombolytics. Randomised, double-blind comparison of reteplase double-bolus administration with streptokinase in acute myocardial infarction (INJECT): trial to investigate equivalence. Lancet 1995; 346(8971):329-336; PMID:7623530; https://doi.org/10.1016/S0140-6736(95)92224-5
  • The Global Use of Strategies to Open Occluded Coronary Arteries (GUSTO III) Investigators. A comparison of reteplase with alteplase for acute myocardial infarction. N Engl J Med 1997; 337(16):1118-1123; PMID:9340503; https://doi.org/10.1056/NEJM199710163371603
  • Keyt BA, Paoni NF, Refino CJ, Nerleau L, Nguyen H, Chow A, Lai J, Pena L, Pater C, Ogez J, et al. A faster-acting and more potent form of tissue plasminogen activator. Proc Natl Acad Sci USA 1994; 91(9):3670-3674; PMID:8170967
  • Cannon CP, McCabe GH, Gibson CM, Ghali M, Sequeira RF, McKendall GR, Breed J, Modi NB, Fox NL, Tracy RP, et al. TNK-tissue plasminogen activator in acute myocardial infarction. Results of the Thrombolysis in Myocardial Infarction (TIMI) 10A dose-ranging trial. Circulation 1997; 95(2):351-356; PMID:9008448; https://doi.org/10.1161/01.CIR.95.2.351
  • Wallentin L, Goldstein P, Armstrong PW, Granger CB, Adgey AA, Arntz HR, Bogaerts K, Danays T, Lindahl B, Makijarvi M, et al. Efficacy and safety of tenecteplase in combination with the low-molecular-weight heparin enoxaparin or unfractionated heparin in the prehospital setting: the Assessment of the Safety and Efficacy of a New Thrombolytic Regimen (ASSENT)-3 PLUS randomized trial in acute myocardial infarction. Circulation 2003; 108(2):135-142; PMID:12847070; https://doi.org/10.1161/01.CIR.0000081659.72985.A8
  • Zeymer U, Neuhaus KL. Clinical trials in acute myocardial infarction. Curr Opin Cardiol 1999; 14(5):392-402; PMID:10500901
  • Cannon CP, Gibson CM, McCabe CH, Adgey AA, Schweiger MJ, Sequeira RF, Grollier G, Giugliano RP, Frey M, Mueller HS, et al. TNK-tissue plasminogen activator compared with front-loaded alteplase in acute myocardial infarction: results of the TIMI 10B trial. Thrombolysis in Myocardial Infarction (TIMI) 10B Investigators. Circulation 1998; 98(25):2805-2814; PMID:9860780; https://doi.org/10.1161/01.CIR.98.25.2805
  • Van de Werf F, Cannon CP, Luyten A, Houbracken K, McCabe CH, Berioli S, Bluhmki E, Sarelin H, Wang-Clow F, Fox NL, et al. Safety assessment of single-bolus administration of TNK tissue-plasminogen activator in acute myocardial infarction: the ASSENT-1 trial. The ASSENT-1 Investigators. Am Heart J 1999; 137(5):786-791; PMID:10220625
  • Van De Werf F, Adgey J, Ardissino D, Armstrong PW, Aylward P, Barbash G, Betriu A, Binbrek AS, Califf R, Diaz R, et al. Single-bolus tenecteplase compared with front-loaded alteplase in acute myocardial infarction: the ASSENT-2 double-blind randomised trial. Assessment of the Safety and Efficacy of a New Thrombolytic (ASSENT-2) Investigators. Lancet 1999; 354(9180):716-22; PMID:10475182; https://doi.org/10.1016/S0140-6736(99)07403-6
  • Malcolm AD, Keltai M, Walsh MJ. ESPRIT: a European study of the prevention of reocclusion after initial thrombolysis with duteplase in acute myocardial infarction. Eur Heart J 1996; 17(10):1522-31; PMID:8909909; https://doi.org/1522-1531
  • Suzuki S, Saito M, Suzuki N, Kato H, Nagaoka N, Yoshitake S, Mizuo H, Yuzuriha T, Yui Y, Kawai C. Thrombolytic properties of a novel modified human tissue-type plasminogen activator (E6010): a bolus injection of E6010 has equivalent potency of lysing young and aged canine coronary thrombi. J Cardiovasc Pharmacol 1991; 17(5):738-46; PMID:1713988
  • Kawai C, Yui Y, Hosoda S, Nobuyoshi M, Suzuki S, Sato H, Takatsu F, Motomiya T, Kanmatsuse K, Kodama K, et al. A prospective, randomized, double-blind multicenter trial of a single bolus injection of the novel modified t-PA E6010 in the treatment of acute myocardial infarction: comparison with native t-PA. E6010 Study Group. J Am Coll Cardiol 1997; 29(7):1447-53; PMID:9180103; https://doi.org/10.1016/S0735-1097(97)00074-0
  • Tagami H, Utoh J, Sun LB, Okamoto K, Moriyama S, Kunitomo R, Kitamura N. Effects of recombinant tissue-type plasminogen activator on life-threatening acute pulmonary thromboembolism in a canine model: a comparative study of e6010 and alteplase. Ann Thorac Cardiovasc Surg 2000; 6(5):299-303; PMID:11173335
  • Inoue T, Nishiki R, Kageyama M, Node K. Therapeutic potential of monteplase in acute myocardial infarction as a powerful thrombolytic agent for pretreatment of coronary intervention. Cardiovasc Drug Rev 2004; 22(4):320-33; Review. PMID:15592577; https://doi.org/10.1111/j.1527-3466.2004.tb00149.x
  • Widimsky P, Groch L, Zelizko M, Aschermann M, Bednar F, Suryapranata H. Multicentre randomized trial comparing transport to primary angioplasty vs immediate thrombolysis vs combined strategy for patients with acute myocardial infarction presenting to a community hospital without a catheterization laboratory. The PRAGUE study. Eur Heart J 2000; 21(10):823-31; PMID:10781354; https://doi.org/10.1053/euhj.1999.1993
  • Inoue T, Yaguchi I, Takayanagi K, Hayashi T, Morooka S, Eguchi Y. A new thrombolytic agent, monteplase, is independent of the plasminogen activator inhibitor in patients with acute myocardial infarction: initial results of the Combining Monteplase with Angioplasty (COMA) trial. Am Heart J. 2002; 144(4):E5; PMID:12360174; https://doi.org/10.1067/mhj.2002.124864
  • Muramatsu H, Igarashi H, Okubo S, Katayama Y. Monteplase reduces infarct volume and hemorrhagic transformation in rat model of embolic stroke. Neurol Res 2002; 24(3):311-6; PMID:11958428; https://doi.org/10.1179/016164102101199800
  • Yamagami T, Yoshimatsu R, Tanaka O, Miura H, Nishimura T. Endovascular thrombolysis using monteplase for non-chronic deep venous thrombosis. Cardiovasc Intervent Radiol 2010; 33(6):1223-9; PMID:20411388; https://doi.org/10.1007/s00270-010-9856-4
  • den Heijer P, Vermeer F, Ambrosioni E, Sadowski Z, Lopez-Sendon JL, von Essen R, Beaufils P, Thadani U, Adgey J, Pierard L, et al. Evaluation of a weight-adjusted single-bolus plasminogen activator in patients with myocardial infarction: a double-blind, randomized angiographic trial of lanoteplase versus alteplase. Circuation 1998; 98(20):2117-25; PMID:9815865; https://doi.org/10.1161/01.CIR.98.20.2117
  • InTIME-II Investigators. Intravenous NPA for the treatment of infarcting myocardium early; InTIME-II, a double-blind comparison of single-bolus lanoteplase vs accelerated alteplase for the treatment of patients with acute myocardial infarction. Eur Heart J 2000; 21(24):2005-13; PMID:11102251; https://doi.org/10.1053/euhj.2000.2498
  • Ishikawa A, Ohata T, Imamura K, Iwasaki M, Sakai T, Matsuzawa T, Okazaki S. Single and repeated intravenous toxicity studies of pamiteplase (genetical recombination) in rats and monkeys. J Toxicol Sci 1997; 22(2):117-33; PMID:9198009
  • Kawasaki T, Katoh M, Kaku S, Gushima H, Takenaka T, Yui Y, Kawai C. Thrombolytic activity of a novel modified tissue-type plasminogen activator, YM866, in a canine model of coronary artery thrombosis. Jpn J Pharmacol 1993; 63(1):9-16; PMID:8271535; https://doi.org/10.1254/jjp.63.9
  • Agnelli G, Pascucci C, Nenci GG, Mele A, Burgi R, Heim J. Thrombolytic and haemorrhagic effects of bolus doses of tissue-type plasminogen activator and a hybrid plasminogen activator with prolonged plasma half-life (K2tu-PA: CGP 42935). Thromb Haemost 1993; 70(2):294-300; PMID:8236138
  • Muller D, Domon B, Karas M, van Oostrum J, Richter WJ. Characterization and direct glycoform profiling of a hybrid plasminogen activator by matrix-assisted laser desorption and electrospray mass spectrometry: correlation with high-performance liquid chromatographic and nuclear magnetic resonance analyses of the released glycans. Biol Mass Spectrom 1994; 23(6):330-8; PMID:8038226; https://doi.org/10.1002/bms.1200230606
  • Rijken DC, Barrett-Bergshoeff MM, Jie AF, Criscuoli M, Sakharov DV. Clot penetration and fibrin binding of amediplase,a chimeric plasminogen activator (K2 tu-PA). Thromb Haemost 2004; 91(1):52-60; PMID:14691568; https://doi.org/10.1160/TH03-07-0435
  • Guimaraes AH, Barrett-Bergshoeff MM, Criscuoli M, Evangelista S, Rijken DC. Fibrinolytic efficacy of Amediplase, Tenecteplase and scu-PA in different external plasma clot lysis models: sensitivity to the inhibitory action of thrombin activatable fibrinolysis inhibitor (TAFI). Thromb Haemost 2006; 96(3):325-30; PMID:16953274; https://doi.org/10.1160/TH06-04-0197
  • Bringmann P, Gruber D, Liese A, Toschi L, Kratzchmar J, Schleuning WD, Donner P. Structural features mediating fibrin selectivity of vampire bat plasminogen activators. J Biol Chem 1995; 270(43):25596-603; PMID:7592732; https://doi.org/10.1074/jbc.270.43.25596
  • Niego B, Horvath A, Coughlin PB, Pugsley MK, Medcalf RL. Desmoteplase-mediated plasminogen activation and clot lysis are inhibited by the lysine analogue tranexamic acid. Blood Coagul Fibrinolysis 2008; 19(4):322-4; PMID:18469556; https://doi.org/10.1097/MBC.0b013e3282f54568
  • Mellott MJ, Stabilito II, Holahan MA, Cuca GC, Wang S, Li P, Barrett JS, Lynch JJ, Gardell SJ. Vampire bat salivary plasminogen activator promotes rapid and sustained reperfusion without concomitant systemic plasminogen activation in a canine model of arterial thrombosis. Arterioscler Thromb 1992; 12(2):212-21; PMID:1371932; https://doi.org/10.1161/01.ATV.12.2.212
  • Reddrop C, Moldrich RX, Beart PM, Farso M, Liberatore GT, Howells DW, Petersen KU, Schleuning WD, Medcalf RL. Vampire bat salivary plasminogen activator (desmoteplase) inhibits tissue-type plasminogen activator-induced potentiation of excitotoxic injury. Stroke 2005; 36(6):1241-6; PMID:15879331; https://doi.org/10.1161/01.STR.0000166050.84056.48
  • Hacke W, Albers G, Al-Rawi Y, Bogousslavsky J, Davalos A, Eliasziw M, Fischer M, Furlan A, Kaste M, Lees KR, et al. The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute strokethrombolysis trial with intravenous desmoteplase. Stroke. 2005; 36(1):66-73; PMID:15569863; https://doi.org/10.1161/01.STR.0000149938.08731.2c
  • Hacke W, Furlan AJ, Al-Rawi Y, Davalos A, Fiebach JB, Gruber F, Kaste M, Lipka LJ, Pedraza S, Ringleb PA, et al. Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol 2009; 8(2):141-50; PMID:19097942; https://doi.org/10.1016/S1474-4422(08)70267-9
  • Albers GW, von Kummer R, Truelsen T, Jensen JK, Ravn GM, Grønning BA, Chabriat H, Chang KC, Davalos AE, Ford GA, et al. Safety and efficacy of desmoteplase given 3–9 h after ischaemic stroke in patients with occlusion or high-grade stenosis in major cerebral arteries (DIAS-3): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet Neurol 2015; 14(6):575-84; PMID:25937443; https://doi.org/10.1016/S1474-4422(15)00047-2
  • Lijnen HR, Van Hoef B, De Cock F, Okada K, Ueshima S, Matsuo O, Collen D. On the mechanism of fibrin-specific plasminogen activation by staphylokinase. J Biol Chem 1991; 266(18):11826-32; PMID:2050679
  • Sakharov DV, Lijnen HR, Rijken DC. Interactions between staphylokinase, plasmin(ogen), and fibrin. Staphylokinase discriminates between freeplasminogen and plasminogen bound to partially degraded fibrin. J Biol Chem 1996; 271(44):27912-8; PMID:8910391; https://doi.org/10.1074/jbc.271.44.27912
  • Schlott B, Guhrs KH, Hartmann M, Röcker A, Collen D. NH2-terminal structural motifs in staphylokinase required for plasminogen activation. J Biol Chem 1998; 273(35):22346-50; PMID:9712854; https://doi.org/10.1074/jbc.273.35.22346
  • Schlott B, Hartmann M, Gührs KH, Birch-Hirschfeld E, Gase A, Vettermann S, Collen D, Lijnen HR. Functional properties of recombinant staphylokinase variants obtained by site-specific mutagenesis ofmethionine-26. Biochim Biophys Acta 1994; 1204(2):235-42; PMID:8142464
  • Jespers L, Vanwetswinkel S, Lijnen HR, Van Herzeele N, Van Hoef B, Demarsin E, Collen D, De Maeyer M. Structural and functional basis of plasminogen activation by staphylokinase. Thromb Haemost 1999; 81(4):479-85; PMID:10235424
  • Silence K, Hartmann M, Gührs KH, Gase A, Schlott B, Collen D, Lijnen HR. Structure-function relationships in staphylokinase as revealed by “clustered charge to alanine” mutagenesis. J Biol Chem 1995; 270(45):27192-8; PMID:7592976; https://doi.org/10.1074/jbc.270.45.27192
  • Szemraj J, Walkowiak B, Kawecka I, Janiszewska G, Buczko W, Bartkowiak J, Chabielska E. A new recombinant thrombolytic and antithrombotic agent with higher fibrin affinity–a staphylokinase variant. I. In vitro study. J Thromb Haemost 2005; 3(10):2156-65; PMID:16150047; https://doi.org/10.1111/j.1538-7836.2005.01480.x
  • Kumar A, Pulicherla KK, Mayuren C, Kotra S, Rao KR. Evaluation of a multifunctional staphylokinase variant with thrombin inhibition and antiplatelet aggregation activities produced from salt-inducible E. coli GJ1158. Can J Physiol Pharmacol 2013; 91(10):839-47; PMID:24144055; https://doi.org/10.1139/cjpp-2012-0467
  • Vanderschueren S, Stockx L, Wilms G, Lacroix H, Verhaeghe R, Vermylen J, Collen D. Thrombolytic therapy of peripheral arterial occlusion with recombinant staphylokinase. Circulation 1995; 92(8):2050-7; PMID:7554181; https://doi.org/10.1161/01.CIR.92.8.2050
  • Vanderschueren S, Barrios L, Kerdsinchai P, Van den Heuvel P, Hermans L, Vrolix M, De Man F, Benit E, Muyldermans L, Collen D, et al. A randomized trial of recombinant staphylokinase versus alteplase for coronary artery patency in acute myocardial infarction. The STAR Trial Group. Circulation 1995; 92(8):2044-9; PMID:7554180; https://doi.org/10.1161/01.CIR.92.8.2044
  • Vanderschueren S, Collen D, van de Werf F. A pilot study on bolus administration of recombinant staphylokinase for coronary artery thrombolysis. Thromb Haemost 1996; 76(4):541-4; PMID:8902993
  • Vanderschueren S, Dens J, Kerdsinchai P, Desmet W, Vrolix M, De Man F, Van den Heuvel P, Hermans L, Collen D, Van de Werf F. Randomized coronary patency trial of double-bolus recombinant staphylokinase versus front-loaded alteplase in acute myocardial infarction. Am Heart J 1997; 134(2 Pt 1):213-9; PMID:9313600; https://doi.org/10.1016/S0002-8703(97)70127-3
  • Armstrong PW, Burton JR, Palisaitis D, Thompson CR, Van de Werf F, Rose B, Collen D, Teo KK. Collaborative angiographic patency trial of recombinant staphylokinase (CAPTORS). Am Heart J 2000; 139(5):820-3; PMID:10783215; https://doi.org/10.1016/S0002-8703(00)90013-9
  • Armstrong PW, Burton J, Pakola S, Molhoek PG, Betriu A, Tendera M, Bode C, Adgey AA, Bar F, Vahanian A, et al. Collaborative Angiographic Patency Trial Of Recombinant Staphylokinase (CAPTORS II). Am Heart J 2003; 146(3):484-8; PMID:12947367; https://doi.org/10.1016/S0002-8703(03)00312-0
  • Zhang Y, Wisner A, Xiong Y, Bon C. A novel plasminogen activator from snake venom. Purification, characterization, and molecular cloning. J Biol Chem 1995; 270(17):10246-55; PMID:7730329; https://doi.org/10.1074/jbc.270.17.10246
  • Park D, Kim H, Chung K, Kim DS, Yun Y. Expression and characterization of a novel plasminogen activator from Agkistrodon halys venom. Toxicon 1998; 36(12):1807-19; PMID:9839665; https://doi.org/10.1016/S0041-0101(98)00090-7
  • Sanchez EF, Santos CI, Magalhaes A, Diniz CR, Figueiredo S, Gilroy J, Richardson M. Isolation of a proteinase with plasminogen-activating activity from Lachesis muta muta (bushmaster) snake venom. Arch Biochem Biophys 2000; 378(1):131-41; PMID:10871053; https://doi.org/10.1006/abbi.2000.1781
  • Jiao J, Yu M, Ru B. Characterization of a recombinant chimeric plasminogen activator with enhanced fibrin binding. Biochim Biophys Acta 2001; 1546(2):399-405; PMID:11295444; https://doi.org/10.1016/S0167-4838(01)00161-3
  • Davami F, Sardari S, Majidzadeh-A K, Hemayatkar M, Barkhrdari F, Omidi M, Azami M, Adeli A, Davoudi N, Mahboudi F. Expression of a novel chimeric truncated t-PA in CHO cells based on in silico experiments. J Biomed Biotechnol 2010;2010:108159; PMID:20885932; https://doi.org/10.1155/2010/108159
  • Marder VJ. Historical perspective and future direction of thrombolysis research: the re-discovery of plasmin. J Thromb Haemost 2011; 9(Suppl 1):364-73; https://doi.org/10.1111/j.1538-7836.2011.04370.x
  • Hoefer IE, Stroes ES, Pasterkamp G, Levi MM, Reekers JA, Verhagen HJ, Meijers JC, Humphries JE, Rotmans JI. Locally applied recombinant plasmin results in effective thrombolysis in a porcine model of arteriovenous graft thrombosis. J Vasc Interv Radiol 2009; 20(7):951-8; PMID:19481472; https://doi.org/10.1016/j.jvir.2009.03.043
  • Sadeghi S, Marder VJ, Stewart D, Kong M, Humphries J, Baumbach GA, Jesmok G. Safety of plasmin in the setting of concomitant aspirin and heparin administration in an animal model of bleeding. J Thromb Haemost 2003; 1(12):2621-5; PMID:14675099; https://doi.org/10.1046/j.1538-7836.2003.00441.x
  • Jahan R, Stewart D, Vinters HV, Yong W, Vinuela F, Vandeberg P, Marder VJ. Middle cerebral artery occlusion in the rabbit using selective angiography: application for assessment of thrombolysis. Stroke 2008; 39(5):1613-5; PMID:18340097; https://doi.org/10.1161/STROKEAHA.107.507376
  • Shlansky-Goldberg RD, Matsumoto AH, Baumbach GA, Siegel JB, Raabe RD, Murphy TP, Deng C, Ray Dawkins J, Marder VJ. A first-in human phase I trial of locally delivered human plasmin for hemodialysis graft occlusion. J Thromb Haemost 2008; 6(6):944-50; PMID:18384651; https://doi.org/10.1111/j.1538-7836.2008.02969.x
  • Medynski D, Tuan M, Liu W, Wu S, Lin X. Refolding, purification, and activation of miniplasminogen and microplasminogen isolated from E. coli inclusion bodies. Protein Expr Purif 2007; 52(2):395-402; PMID:17126563; https://doi.org/10.1016/j.pep.2006.10.012
  • Moroz LA. Mini-plasminogen: a mechanism for leukocyte modulation of plasminogen activation by urokinase. Blood 1981; 58(1):97-104; PMID:7016219
  • Kolev K, Komorowicz E, Owen WG, Machovich R. Quantitative comparison of fibrin degradation with plasmin, miniplasmin, neurophil leukocyte elastase andcathepsin G. Thromb Haemost. 1996; 75(1):140-6; PMID:8713793
  • Fu J, Ren J, Zou L, Bian G, Li R, Lu Q. The thrombolytic effect of miniplasmin in a canine model of femoral artery thrombosis. Thromb Res 2008; 122(5):683-90; PMID:18328540; https://doi.org/10.1016/j.thromres.2008.01.007
  • Shi GY, Wu HL. Isolation and characterization of microplasminogen. A low molecular weight form of plasminogen. J Biol Chem 1988; 263(32):17071-5; PMID:2972717
  • Ma Z, Lu W, Wu S, Chen J, Sun Z, Liu JN. Expression and characterization of recombinant human micro-plasminogen. Biotechnol Lett 2007; 29(4):517-23; PMID:17206368; https://doi.org/10.1007/s10529-006-9290-5
  • Nagai N, Demarsin E, Van Hoef B, Wouters S, Cingolani D, Laroche Y, Collen D. Recombinant human microplasmin: production and potential therapeutic properties. J Thromb Haemost 2003; 1(2):307-13; PMID:12871505; https://doi.org/10.1046/j.1538-7836.2003.00078.x
  • Wang J, Brdar B, Reich E. Structure and function of microplasminogen: I. Methionine shuffling, chemical proteolysis, and proenzymeactivation. Protein Sci 1995; 4(9):1758-67; PMID:8528074; https://doi.org/10.1002/pro.5560040911
  • Suzuki Y, Nagai N, Collen D. Comparative effects of microplasmin and tissue-type plasminogen activator (tPA) on cerebral hemorrhage in a middle cerebral artery occlusion model in mice. J Thromb Haemost 2004; 2(9):1617-21; PMID:15333039; https://doi.org/10.1111/j.1538-7836.2004.00889.x
  • Chen F, Suzuki Y, Nagai N, Sun X, Wang H, Yu J, Marchal G, Ni Y. Microplasmin and tissue plasminogen activator: comparison of therapeutic effects in rat stroke model at multiparametric MR imaging. Radiology 2007; 244(2):429-38; PMID:17581889; https://doi.org/10.1148/radiol.2442061316
  • Thijs VN, Peeters A, Vosko M, Aichner F, Schellinger PD, Schneider D, Neumann-Haefelin T, Rother J, Davalos A, Wahlgren N, Verhamme P. Randomized, placebo-controlled, dose-ranging clinical trial of intravenous microplasmin in patients with acute ischemic stroke. Stroke 2009; 40(12):3789-95; https://doi.org/10.1161/STROKEAHA.109.560201
  • Verhamme P, Jerome M, Goossens G, Devis J, Maleux G, Stas M. A pilot trial of microplasmin in patients with long-term venous access catheter thrombosis. J Thromb Thrombolysis 2009; 28(4):477-81; PMID:19225865; https://doi.org/10.1007/s11239-009-0310-x
  • Chen W, Huang X, Ma XW, Mo W, Wang WJ, Song HY. Enzymatic vitreolysis with recombinant microplasminogen and tissue plasminogen activator. Eye (Lond) 2008; 22(2):300-7; PMID:17704761; https://doi.org/10.1038/sj.eye.6702931
  • de Smet MD, Valmaggia C, Zarranz-Ventura J, Willekens B. Microplasmin: ex vivo characterization of its activity in porcine vitreous. Invest Ophthalmol Vis Sci 2009; 50(2):814-9; PMID:18806295; https://doi.org/10.1167/iovs.08-2185
  • Hunt JA, Petteway SR Jr, Scuderi P, Novokhatny V. Simplified recombinant plasmin: production and functional comparison of a novel thrombolytic molecule withplasma-derived plasmin. Thromb Haemost 2008; 100(3):413-9; PMID:18766256; https://doi.org/10.1160/TH08-04-0225
  • Deitcher SR, Funk WD, Buchanan J, Liu S, Levy MD, Toombs CF. Alfimeprase: a novel recombinant direct-acting fibrinolytic. Expert Opin Biol Ther 2006; 6(12):1361-9; PMID:17223743; https://doi.org/10.1517/14712598.6.12.1361
  • Toombs CF. Alfimeprase: pharmacology of a novel fibrinolytic metalloproteinase for thrombolysis. Haemostasis 2001; 31(3–6):141-7; PMID:11910179; https://doi.org/48057
  • Hong TT, Huang J, Lucchesi BR. Effect of thrombolysis on myocardial injury: recombinant tissue plasminogen activator vs. alfimeprase. Am J Physiol Heart Circ Physiol 2006; 290(3):H959-67; PMID:16243915; https://doi.org/10.1152/ajpheart.00649.2005
  • Ouriel K, Cynamon J, Weaver FA, Dardik H, Akers D, Blebea J, Gruneiro L, Toombs CF, Wang-Clow F, Mohler M, et al. A phase I trial of alfimeprase for peripheral arterial thrombolysis. J Vasc Interv Radiol 2005; 16(8):1075-83; PMID:16105919; https://doi.org/10.1097/01.RVI.0000167863.10122.2A
  • Moll S, Kenyon P, Bertoli L, De Maio J, Homesley H, Deitcher SR. Phase II trial of alfimeprase, a novel-acting fibrin degradation agent, for occluded central venous access devices. J Clin Oncol. 2006 Jul 1; 24(19):3056-60; PMID:16809729; https://doi.org/10.1200/JCO.2006.05.8438
  • Deitcher SR, Moll S, Homesley HD, Bertoli L, Kenyon P, Swischuk P, Pena L. Safety and Efficacy of Alfimeprase for Restoring Function in Occluded Central Venous Catheters: Interim Results of a Phase 2, Multicenter, Randomized, Double-Blind Study (NuCath). Blood 2004; 104(11):1768-1768.
  • Siigur E, Siigur J. Purification and characterization of lebetase, a fibrinolytic enzyme from Vipera lebetina (snake) venom. Biochim Biophys Acta 1991; 1074(2):223-9; PMID:2065076; https://doi.org/10.1016/0304-4165(91)90156-B
  • Wu B, Wu L, Chen D, Yang Z, Luo M. Purification and characterization of a novel fibrinolytic protease from Fusarium sp. CPCC 480097. J Ind Microbiol Biotechnol 2009; 36(3):451-9; PMID:19142678; https://doi.org/10.1007/s10295-008-0516-5
  • Nakamura S, Hashimoto Y, Mikami M, Yamanaka E, Soma T, Hino M, Azuma A, Kudoh S. Effect of the proteolytic enzyme serrapeptase in patients with chronic airway disease. Respirology 2003; 8(3):316-20; PMID:12911824; https://doi.org/10.1046/j.1440-1843.2003.00482.x
  • Fujita M, Hong K, Ito Y, Fujii R, Kariya K, Nishimuro S. Thrombolytic effect of nattokinase on a chemically induced thrombosis model in rat. Biol Pharm Bull 1995; 18(10):1387-91; PMID:8593442
  • Sumi H, Hamada H, Nakanishi K, Hiratani H. Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. Acta Haematol 1990; 84(3):139-43; PMID:2123064
  • Domsalla A, Melzig MF. Occurrence and properties of proteases in plant latices. Planta Med 2008; 74(7):699-711; PMID:18496785; https://doi.org/10.1055/s-2008-1074530
  • Prasad S, Kashyap RS, Deopujari JY, Purohit HJ, Taori GM, Daginawala HF. Effect of Fagonia Arabica (Dhamasa) on in vitro thrombolysis. BMC Complement Altern Med 2007;7:36; PMID:17986325; https://doi.org/10.1186/1472-6882-7-36
  • Rahman MA, Sultana R, Bin Emran T, Islam MS, Rahman MA, Chakma JS, Rashid HU, Hasan CM. Effects of organic extracts of six Bangladeshi plants on in vitro thrombolysis and cytotoxicity. BMC Complement Altern Med 2013;13:25; PMID:23363538; https://doi.org/10.1186/1472-6882-13-25
  • Emran TB, Rahman MA, Uddin MM, Rahman MM, Uddin MZ, Dash R, Layzu C. Effects of organic extracts and their different fractions of five Bangladeshi plants on in vitro thrombolysis. BMC Complement Altern Med 2015;15:128; PMID:25902818; https://doi.org/10.1186/s12906-015-0643-2
  • Patel GK, Kawale AA, Sharma AK. Purification and physicochemical characterization of a serine protease with fibrinolytic activity from latex of a medicinal herb Euphorbia hirta. Plant Physiol Biochem 2012;52:104-11; PMID:22305073; https://doi.org/10.1016/j.plaphy.2011.12.004
  • Domsalla A, Gorick C, Melzig MF. Proteolytic activity in latex of the genus Euphorbia–a chemotaxonomic marker? Pharmazie 2010; 65(3):227-30; PMID:20383946
  • Rajesh R, Shivaprasad HV, Gowda CD, Nataraju A, Dhananjaya BL, Vishwanath BS. Comparative study on plant latex proteases and their involvement in hemostasis: a special emphasis on clot inducing and dissolving properties. Planta Med 2007; 73(10):1061-7; PMID:17691056; https://doi.org/10.1055/s-2007-981575
  • Shivaprasad HV, Riyaz M, Venkatesh Kumar R, Dharmappa KK, Tarannum S, Siddesha JM, Rajesh R, Vishwanath BS. Cysteine proteases from the Asclepiadaceae plants latex exhibited thrombin and plasmin like activities. J Thromb Thrombolysis 2009; 28(3):304-8; PMID:18979066; https://doi.org/10.1007/s11239-008-0290-2
  • Fonseca KC, Morais NC, Queiroz MR, Silva MC, Gomes MS, Costa JO, Mamede CC, Torres FS, Penha-Silva N, Beletti ME, et al. Purification and biochemical characterization of Eumiliin from Euphorbia milii var. hislopii latex. Phytochemistry 2010; 71(7):708-15; PMID:20206951; https://doi.org/10.1016/j.phytochem.2010.02.009
  • Errasti ME, Prospitti A, Viana CA, Gonzalez MM, Ramos MV, Rotelli AE, Caffini NO. Effects on fibrinogen, fibrin, and blood coagulation of proteolytic extracts from fruits of Pseudananas macrodontes, Bromelia balansae, and B. hieronymi (Bromeliaceae) in comparison with bromelain. Blood Coagul Fibrinolysis 2016; 27(4):441-9; PMID:26886361; https://doi.org/10.1097/MBC.0000000000000531
  • Sung YY, Yang WK, Kim HK. Antiplatelet, anticoagulant and fibrinolytic effects of Litchi chinensis Sonn. extract. Mol Med Rep 2012; 5(3):721-4; PMID:22200762; https://doi.org/10.3892/mmr.2011.735
  • Siritapetawee J, Thumanu K, Sojikul P, Thammasirirak S. A novel serine protease with human fibrino(geno)lytic activities from Artocarpus heterophyllus latex. Biochim Biophys Acta 2012; 1824(7):907-12; PMID:22579962; https://doi.org/10.1016/j.bbapap.2012.05.002
  • Viana CA, Oliveira JS, Freitas CD, Alencar NM, Carvalho CP, Nishi BC, Ramos MV. Thrombin and plasmin-like activities in the latices of Cryptostegia grandiflora and Plumeria rubra. Blood Coagul Fibrinolysis 2013; 24(4):386-92; PMID:23314383; https://doi.org/10.1097/MBC.0b013e32835d540b
  • Siritapetawee J, Sojikul P, Klaynongsruang S. Biochemical characterization of a new glycosylated protease from Euphorbia cf. lactea latex; Plant Physiol Biochem 2015;92:30-8; PMID:25900422; https://doi.org/10.1016/j.plaphy.2015.04.012
  • Koudelka S, Mikulik R, Masek J, Raska M, Turanek Knotigova P, Miller AD, Turanek J. Liposomal nanocarriers for plasminogen activators. J Control Release 2016;227:45-57; PMID:26876783; https://doi.org/10.1016/j.jconrel.2016.02.019
  • Perkins WR, Vaughan DE, Plavin SR, Daley WL, Rauch J, Lee L, Janoff AS. Streptokinase entrapment in interdigitation-fusion liposomes improves thrombolysis in an experimental rabbit model. Thromb Haemost 1997; 77(6):1174-8; PMID:9241753
  • Kim IS, Choi HG, Choi HS, Kim BK, Kim CK. Prolonged systemic delivery of streptokinase using liposome. Arch Pharm Res 1998; 21(3):248-52; PMID:9875439
  • Nguyen PD, O'Rear EA, Johnson AE, Patterson E, Whitsett TL, Bhakta R. Accelerated thrombolysis and reperfusion in a canine model of myocardial infarction by liposomal encapsulation of streptokinase. Circ Res 1990; 66(3):875-8; PMID:2306811; https://doi.org/10.1161/01.RES.66.3.875
  • Vaidya B, Agrawal GP, Vyas SP. Platelets directed liposomes for the delivery of streptokinase: development and characterization. Eur J Pharm Sci 2011; 44(5):589-94; PMID:22009110; https://doi.org/10.1016/j.ejps.2011.10.004
  • Jin SE, Kim IS, Kim CK. Comparative effects of PEG-containing liposomal formulations on in vivo pharmacokinetics of streptokinase. Arch Pharm Res 2015; 38(10):1822-9; PMID:25851624; https://doi.org/10.1007/s12272-015-0594-7
  • Absar S, Nahar K, Kwon YM, Ahsan F. Thrombus-targeted nanocarrier attenuates bleeding complications associated with conventional thrombolytic therapy. Pharm Res 2013; 30(6):1663-76; PMID:23468049; https://doi.org/10.1007/s11095-013-1011-x
  • Erdogan S, Ozer AY, Bilgili H. In vivo behaviour of vesicular urokinase. Int J Pharm 2005; 295(1-2):1-6; PMID:15847986; https://doi.org/10.1016/j.ijpharm.2005.01.021
  • Wang XT, Li S, Zhang XB, Hou XP. [Preparation of thrombus-targeted urokinase liposomes and its thrombolytic effect in model rats]. Yao Xue Xue Bao 2003; 38(3):231-5; PMID:12830724
  • Lu CP, Yang H, Wang J, Dong XL. [Thrombolysis of rabbit's pulmonary embolism with thrombus-targeted urokinase immune liposome]. Zhonghua Xin Xue Guan Bing Za Zhi 2009; 37(11):1035-8; PMID:20137334
  • Saxena V, Gacchina Johnson C, Negussie AH, Sharma KV, Dreher MR, Wood BJ. Temperature-sensitive liposome-mediated delivery of thrombolytic agents. Int J Hyperthermia 2015; 31(1):67-73; PMID:25766387; https://doi.org/10.3109/02656736.2014.991428
  • Kandadai MA, Meunier JM, Hart K, Holland CK, Shaw GJ. Plasmin-loaded echogenic liposomes for ultrasound-mediated thrombolysis. Transl Stroke Res 2015; 6(1):78-87; PMID:25411015; https://doi.org/10.1007/s12975-014-0376-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.