1,132
Views
11
CrossRef citations to date
0
Altmetric
Research Paper

Schwann cells genetically modified to express S100A4 increases GAP43 expression in spiral ganglion neurons in vitro

&
Pages 404-410 | Received 19 Aug 2016, Accepted 09 Sep 2016, Published online: 26 Oct 2016

References

  • Fu X, Tong Z, Li Q, Niu Q, Zhang Z, Tong X, Tong L, Zhang X. Induction of adipose-derived stem cells into Schwann-like cells and observation of Schwann-like cell proliferation. Mol Med Rep 2016; 14:1187-93; PMID:27279556
  • Pinzon A, Calancie B, Oudega M, Noga BR. Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord. J Neurosci Res 2001; 64:533-41; PMID:11391708; https://doi.org/10.1002/jnr.1105
  • Chernousov MA, Carey DJ. Schwann cell extracellular matrix molecules and their receptors. Histol Histopathol 2000; 15:593-601; PMID:10809381
  • Auld DS, Robitaille R. Perisynaptic Schwann cells at the neuromuscular junction: nerve- and activity-dependent contributions to synaptic efficacy, plasticity, and reinnervation. Neuroscientist 2003; 9:144-57; PMID:12708618; https://doi.org/10.1177/1073858403252229
  • Argall KG, Armati PJ, Pollard JD, Watson E, Bonner J. Interactions between CD4+ T-cells and rat Schwann cells in vitro. One. Antigen presentation by Lewis rat Schwann cells to P2-specific CD4+ T-cell lines. J Neuroimmunol 1992; 40:1-18; PMID:1381378; https://doi.org/10.1016/0165-5728(92)90208-3
  • Yi S, Yuan Y, Chen Q, Wang X, Gong L, Liu J, Gu X, Li S. Regulation of Schwann cell proliferation and migration by miR-1 targeting brain-derived neurotrophic factor after peripheral nerve injury. Sci Rep 2016; 6:29121; PMID:27381812; https://doi.org/10.1038/srep29121
  • Dodson HC, Mohuiddin A. Response of spiral ganglion neurones to cochlear hair cell destruction in the guinea pig. J Neurocytol 2000; 29:525-37; PMID:11279367; https://doi.org/10.1023/A:1007201913730
  • Pettingill LN, Minter RL, Shepherd RK. Schwann cells genetically modified to express neurotrophins promote spiral ganglion neuron survival in vitro. Neuroscience 2008; 152:821-8; PMID:18304740; https://doi.org/10.1016/j.neuroscience.2007.11.057
  • Gillespie LN, Clark GM, Bartlett PF, Marzella PL. BDNF-induced survival of auditory neurons in vivo: Cessation of treatment leads to accelerated loss of survival effects. J Neurosci Res 2003; 71:785-90; PMID:12605404; https://doi.org/10.1002/jnr.10542
  • Miller JM, Chi DH, O'Keeffe LJ, Kruszka P, Raphael Y, Altschuler RA. Neurotrophins can enhance spiral ganglion cell survival after inner hair cell loss. Int J Dev Neurosci 1997; 15:631-43; PMID:9263039; https://doi.org/10.1016/S0736-5748(96)00117-7
  • Qi R, Qiao T, Zhuang X. Small interfering RNA targeting S100A4 sensitizes non-small-cell lung cancer cells (A549) to radiation treatment. Onco Targets Ther 2016; 9:3753-62; PMID:27382312; https://doi.org/10.2147/OTT.S106557
  • Tahara S, Nojima S, Ohshima K, Hori Y, Kurashige M, Wada N, Ikeda JI, Morii E. S100A4 accelerates the proliferation and invasion of endometrioid carcinoma and is associated with the ‘MELF’ pattern. Cancer Sci 2016; 107(9):1345-52
  • Sandelin M, Zabihi S, Liu L, Wicher G, Kozlova EN. Metastasis-associated S100A4 (Mts1) protein is expressed in subpopulations of sensory and autonomic neurons and in Schwann cells of the adult rat. J Comp Neurol 2004; 473:233-43; PMID:15101091; https://doi.org/10.1002/cne.20115
  • Dmytriyeva O, Pankratova S, Owczarek S, Sonn K, Soroka V, Ridley CM, Marsolais A, Lopez-Hoyos M, Ambartsumian N, Lukanidin E, et al. The metastasis-promoting S100A4 protein confers neuroprotection in brain injury. Nat Commun 2012; 3:1197; PMID:23149742; https://doi.org/10.1038/ncomms2202
  • Moldovan M, Pinchenko V, Dmytriyeva O, Pankratova S, Fugleholm K, Klingelhofer J, Bock E, Berezin V, Krarup C, Kiryushko D. Peptide mimetic of the S100A4 protein modulates peripheral nerve regeneration and attenuates the progression of neuropathy in myelin protein P0 null mice. Mol Med 2013; 19:43-53; PMID:23508572
  • Gupta D, Venugopal J, Prabhakaran MP, Dev VR, Low S, Choon AT, Ramakrishna S. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater 2009; 5:2560-9; PMID:19269270; https://doi.org/10.1016/j.actbio.2009.01.039
  • Warnecke A, Sasse S, Wenzel GI, Hoffmann A, Gross G, Paasche G, Scheper V, Reich U, Esser KH, Lenarz T, et al. Stable release of BDNF from the fibroblast cell line NIH3T3 grown on silicone elastomers enhances survival of spiral ganglion cells in vitro and in vivo. Hearing Res 2012; 289:86-97; PMID:22564255; https://doi.org/10.1016/j.heares.2012.04.007
  • Bird CD, Emery NJ. Insightful problem solving and creative tool modification by captive nontool-using rooks. Proc Natl Acad Sci U S A 2009; 106:10370-5; PMID:19478068; https://doi.org/10.1073/pnas.0901008106
  • Chiappetta G, Valentino T, Vitiello M, Pasquinelli R, Monaco M, Palma G, Sepe R, Luciano A, Pallante P, Palmieri D, et al. PATZ1 acts as a tumor suppressor in thyroid cancer via targeting p53-dependent genes involved in EMT and cell migration. Oncotarget 2015; 6:5310-23; PMID:25595894; https://doi.org/10.18632/oncotarget.2776
  • Mani NL, Schalper KA, Hatzis C, Saglam O, Tavassoli F, Butler M, Chagpar AB, Pusztai L, Rimm DL. Quantitative assessment of the spatial heterogeneity of tumor-infiltrating lymphocytes in breast cancer. Breast Cancer Res 2016; 18:78; PMID:27473061; https://doi.org/10.1186/s13058-016-0737-x
  • Anliker B, Choi JW, Lin ME, Gardell SE, Rivera RR, Kennedy G, Chun J. Lysophosphatidic acid (LPA) and its receptor, LPA1, influence embryonic schwann cell migration, myelination, and cell-to-axon segregation. Glia 2013; 61:2009-22; PMID:24115248; https://doi.org/10.1002/glia.22572
  • Chang HM, Shyu MK, Tseng GF, Liu CH, Chang HS, Lan CT, Hsu WM, Liao WC. Neuregulin facilitates nerve regeneration by speeding Schwann cell migration via ErbB2/3-dependent FAK pathway. PLoS One 2013; 8:e53444; PMID:23301073; https://doi.org/10.1371/journal.pone.0053444
  • Qin J, Wang L, Zheng L, Zhou X, Zhang Y, Yang T, Zhou Y. Concentrated growth factor promotes Schwann cell migration partly through the integrin beta1-mediated activation of the focal adhesion kinase pathway. Int J Mol Med 2016; 37:1363-70; PMID:26986804
  • Mantuano E, Lam MS, Shibayama M, Campana WM, Gonias SL. The NMDA receptor functions independently and as an LRP1 co-receptor to promote Schwann cell survival and migration. J Cell Sci 2015; 128:3478-88; PMID:26272917; https://doi.org/10.1242/jcs.173765
  • Lv J, Sun X, Ma J, Ma X, Zhang Y, Li F, Li Y, Zhao Z. Netrin-1 induces the migration of Schwann cells via p38 MAPK and PI3K-Akt signaling pathway mediated by the UNC5B receptor. Biochem Biophys Res Commun 2015; 464:263-8; PMID:26116534; https://doi.org/10.1016/j.bbrc.2015.06.140
  • Dimmeler S, Dernbach E, Zeiher AM. Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett 2000; 477:258-62; PMID:10908731; https://doi.org/10.1016/S0014-5793(00)01657-4
  • Rosenstein JM, Krum JM, Ruhrberg C. VEGF in the nervous system. Organogenesis 2010; 6:107-14; PMID:20885857; https://doi.org/10.4161/org.6.2.11687
  • Chattopadhyay S, Shubayev VI. MMP-9 controls Schwann cell proliferation and phenotypic remodeling via IGF-1 and ErbB receptor-mediated activation of MEK/ERK pathway. Glia 2009; 57:1316-25; PMID:19229995; https://doi.org/10.1002/glia.20851
  • Mantuano E, Inoue G, Li X, Takahashi K, Gaultier A, Gonias SL, Campana WM. The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of schwann cells by binding to low-density lipoprotein receptor-related protein. J Neurosci 2008; 28:11571-82; PMID:18987193; https://doi.org/10.1523/JNEUROSCI.3053-08.2008
  • Basi GS, Jacobson RD, Virag I, Schilling J, Skene JH. Primary structure and transcriptional regulation of GAP-43, a protein associated with nerve growth. Cell 1987; 49:785-91; PMID:3581170; https://doi.org/10.1016/0092-8674(87)90616-7
  • Flamm AG, Zerko S, Zawadzka-Kazimierczuk A, Kozminski W, Konrat R, Coudevylle N. 1H, 15N, 13C resonance assignment of human GAP-43. Biomol NMR Assign 2016; 10:171-4; PMID:26748655; https://doi.org/10.1007/s12104-015-9660-9
  • Illing RB, Horvath M. Re-emergence of GAP-43 in cochlear nucleus and superior olive following cochlear ablation in the rat. Neurosci Lett 1995; 194:9-12; PMID:7478222; https://doi.org/10.1016/0304-3940(95)11706-3