4,178
Views
13
CrossRef citations to date
0
Altmetric
Review

Engineering of L-amino acid deaminases for the production of α-keto acids from L-amino acids

, &
Pages 43-51 | Received 21 Feb 2019, Accepted 12 Mar 2019, Published online: 27 Mar 2019

References

  • Cooper AJR, Ginos JZ, Alton Meister A. Synthesis and properties of the alpha keto acids. Chem Rev. 1983;83:321–358.
  • Mir S, Ozkayin N, Akgun A. The role of keto acids in the supportive treatment of children with chronic renal failure. Pediatr Nephrol. 2005;20(7):950–955.
  • Nie C, He T, Zhang W, et al. Branched Chain Amino Acids: beyond nutrition metabolism. Int J Mol Sci. 2018;19(4):954.
  • Cahill GF JR, Veech RL. Ketoacids? Good medicine? Trans Am Clin Climatological Assoc. 2003;114:149–163.
  • Song Y, Li J, Shin HD, et al. Biotechnological production of alpha-keto acids: current status and perspectives. Bioresour Technol. 2016;219:716–724.
  • Geueke B, Hummel W. A new bacterial l-amino acid oxidase with a broad substrate specificity- purification and characterization. Enzyme Microb Technol. 2002;31:77–87.
  • Takahashi E, Ito K, Yoshimoto T. Cloning of L Amino Acid Deaminase Gene from Proteus vulgaris. Biosci Biotechnol Biochem. 1999;63(12):2244–2247.
  • Baek JO, Seo JW, Kwon O, et al. Expression and characterization of a second L-amino acid deaminase isolated from Proteus mirabilis in Escherichia coli. J Basic Microbiol. 2011;51(2):129–135.
  • Ju Y, Liu Z, Zhang Z, et al. Membrane binding of the insertion sequence of Proteus vulgaris L-amino acid deaminase stabilizes protein structure and increases catalytic activity. Sci Rep. 2017;7(1):13719.
  • Molla G, Melis R, Pollegioni L. Breaking the mirror: l-Amino acid deaminase, a novel stereoselective biocatalyst. Biotechnol Adv. 2017;35(6):657–668.
  • Pollegioni L, Motta P, Molla G. L-amino acid oxidase as biocatalyst: a dream too far? Appl Microbiol Biotechnol. 2013;97(21):9323–9341.
  • Motta P, Molla G, Pollegioni L, et al. Structure-function relationships in l-amino acid deaminase, a flavoprotein belonging to a novel class of biotechnologically relevant enzymes. J Biol Chem. 2016;291(20):10457–10475.
  • Hossain GS, Li J, Shin HD, et al. L-Amino acid oxidases from microbial sources: types, properties, functions, and applications. Appl Microbiol Biotechnol. 2014;98(4):1507–1515.
  • Ding H, Zhao W, Lü C, et al. Biosynthesis of 4 hydroxyphenylpyruvic acid from L-tyrosine. Chin J Chem Eng. 2018;26:380–385.
  • Waters KL. The alpha-ketoacids. Chem Rev. 1947;41(1947):585–598.
  • Meister K. Preparation of α-Keto Acids. Methods Enzymol. 1957;3:404–414.
  • Buckle-Vallant V, Krause FS, Messerschmidt S, et al. Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production. Appl Microbiol Biotechnol. 2014;98(1):297–311.
  • Heijne GV. Protein evolution and design.pdf. Annu Rev Biochem. 2018;87(2018):101–103.
  • Boersma YL, Droge MJ, Quax WJ. Selection strategies for improved biocatalysts. FEBS J. 2007;274(9):2181–2195.
  • Leemhuis H, Kelly RM, Dijkhuizen L. Directed evolution of enzymes: library screening strategies. IUBMB Life. 2009;61(3):222–228.
  • Zhu L, Wu Z, Jin JM, et al. Directed evolution of leucine dehydrogenase for improved efficiency of L-tert-leucine synthesis. Appl Microbiol Biotechnol. 2016;100(13):5805–5813.
  • Kataoka K, Tanizawa K. Alteration of substrate specificity of leucine dehydrogenase by site-directed mutagenesis. J Mol Catal B Enzym. 2003;23:299–309.
  • Lutz S, Patrick WM. Novel methods for directed evolution of enzymes: quality, not quantity. Curr Opin Biotechnol. 2004;15(4):291–297.
  • Packer MS, Liu DR. Methods for the directed evolution of proteins. Nat Rev Genet. 2015;16(7):379–394.
  • Kelly RM, Leemhuis H, Dijkhuizen L. Conversion of a cyclodextrin glucanotransferase into an amylase- assessment of directed evolution strategies. Biochemistry. 2007;46:11216–11222.
  • Park S, Morley KL, Horsman GP, et al. Focusing mutations into the P. fluorescens esterase binding site increases enantioselectivity more effectively than distant mutations. Chem Biol. 2005;12(1):45–54.
  • Arnold FH, Georgiou G. Directed evolution library creation: methods and protocols. Vol. 231. Totowa, New Jersey: Humana Press Inc.; 2003.
  • Coban HB, Demirci A, Patterson PH, et al. Enhanced phenylpyruvic acid production with Proteus vulgaris in fed-batch and continuous fermentation. Prep Biochem Biotechnol. 2016;46(2):157–160.
  • Zhao W, Ding H, Lv C, et al. Two-step biocatalytic reaction using recombinant Escherichia coli cells for efficient production of phenyllactic acid. Process Biochem. 2018;64:31–37.
  • Pantaleon DP, Geller AM, Taylor PP. Purification and characterization of an L-amino acid deaminase used to prepare unnatural amino acids. J Mol Catal B Enzym. 2001;11:795–803.
  • Mu W, Yu S, Zhu L, et al. Recent research on 3-phenyllactic acid, a broad-spectrum antimicrobial compound. Appl Microbiol Biotechnol. 2012;95(5):1155–1163.
  • Des Abbayes H, Salaün JY. Double carbonylation and beyond- systems at work and their organometallic models. Dalton Trans. 2003;1041–1052.
  • Villablanca M, Cilento G. Oxidation of phenylpyruvic acid. Biochim Biophys Acta Gen Subj. 1987;926(3):224–230.
  • Hou Y, Hossain GS, Li J, et al. Production of phenylpyruvic acid from L-phenylalanine using an L-amino acid deaminase from Proteus mirabilis: comparison of enzymatic and whole-cell biotransformation approaches. Appl Microbiol Biotechnol. 2015;99(20):8391–8402.
  • Hou Y, Hossain GS, Li J, et al. Combination of phenylpyruvic acid (PPA) pathway engineering and molecular engineering of L-amino acid deaminase improves PPA production with an Escherichia coli whole-cell biocatalyst. Appl Microbiol Biotechnol. 2016;100(5):2183–2191.
  • Zhou Y, Jetton TL, Goshorn S, et al. Transamination is required for {alpha}-ketoisocaproate but not leucine to stimulate insulin secretion. J Biol Chem. 2010;285(44):33718–33726.
  • Ju Y, Tong S, Gao Y, et al. Crystal structure of a membrane-bound l-amino acid deaminase from Proteus vulgaris. J Struct Biol. 2016;195(3):306–315.
  • Vogt M, Haas S, Polen T, et al. Production of 2-ketoisocaproate withCorynebacterium glutamicumstrains devoid of plasmids and heterologous genes. Microb Biotechnol. 2015;8(2):351–360.
  • Zhu Y, Li J, Liu L, et al. Production of alpha-ketoisocaproate via free-whole-cell biotransformation by Rhodococcus opacus DSM 43250 with L-leucine as the substrate. Enzyme Microb Technol. 2011;49(4):321–325.
  • Song Y, Li J, Shin HD, et al. One-step biosynthesis of alpha-ketoisocaproate from L-leucine by an Escherichia coli whole-cell biocatalyst expressing an L-amino acid deaminase from Proteus vulgaris. Sci Rep. 2015;5:12614.
  • Song Y, Li J, Shin HD, et al. Tuning the transcription and translation of L-amino acid deaminase in Escherichia coli improves alpha-ketoisocaproate production from L-leucine. PLoS One. 2017;12(6):e0179229.
  • Otto C, Yovkova V, Barth G. Overproduction and secretion of alpha-ketoglutaric acid by microorganisms. Appl Microbiol Biotechnol. 2011;92(4):689–695.
  • Doucette CD, Schwab DJ, Wingreen NS, et al. alpha-Ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nat Chem Biol. 2011;7(12):894–901.
  • Verseck S, Karau A, Weber M, Fermentative production of alpha-ketoglutaric acid. Patent WO200905348; Evonik Degussa GmbH. 2009.
  • Finogenova TV, Morgunov IG, Kamzolova SV, et al. Organic acid production by the yeast yarrowia lipolytica- a review of prospects. Appl Biochem Microbiol. 2005;41(5):418–425.
  • Hossain GS, Li J, Shin HD, et al. Bioconversion of l-glutamic acid to alpha-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis. J Biotechnol. 2014;169:112–120.
  • Hossain GS, Li J, Shin HD, et al. Improved production of alpha-ketoglutaric acid (alpha-KG) by a Bacillus subtilis whole-cell biocatalyst via engineering of L-amino acid deaminase and deletion of the alpha-KG utilization pathway. J Biotechnol. 2014;187:71–77.
  • Hossain GS, Shin H, Li J, et al. Integrating error-prone PCR and DNA shuffling as an effective molecular evolution strategy for the production of α-ketoglutaric acid by l-amino acid deaminase. RSC Adv. 2016;6(52):46149–46158.
  • Chassagnole C, Diano. A, Létisse F, et al. Metabolic network analysis during fed-batch cultivation of Corynebacterium glutamicum for pantothenic acid production. J Biotechnol. 2003;104:261–272.
  • Li R, Sakir HG, Li J, et al. Rational molecular engineering of l-amino acid deaminase for production of α-ketoisovaleric acid from l-valine by Escherichia coli. RSC Adv. 2017;7(11):6615–6621.
  • Quash G, Roch AM, Chantepie J, et al. Methional_derived_from_4-methylthio-2-oxobutanoate. Biochem J. 1995;305(3):1017–1025.
  • Dilger RN, Kobler C, Weckbecker C, et al. 2-Keto-4-(methylthio)butyric acid (keto analog of methionine) is a safe and efficacious precursor of l-methionine in chicks. J Nutr. 2007;137(8):1868–1873.
  • García-García M, Martínez-Martínez I, Sánchez-Ferrer À, et al. Production of the apoptotic cellular mediator 4-methylthio-2-oxobutyric acid byusing an enzymatic stirred tank reactor with in situ product removal. Biotechnol Prog. 2008;24(1):187–191.
  • Hossain GS, Li J, Shin HD, et al. One-step biosynthesis of alpha-keto-gamma-methylthiobutyric acid from L-methionine by an Escherichia coli whole-cell biocatalyst expressing an engineered L-amino acid deaminase from Proteus vulgaris. PLoS One. 2014;9(12):e114291.
  • Xu P, Qiu J, Gao C, et al. Biotechnological routes to pyruvate production. J Biosci Bioeng. 2008;105(3):169–175.
  • Onakpoya I, Hunt K, Wider B, et al. Pyruvate supplementation for weight loss: a systematic review and meta-analysis of randomized clinical trials. Crit Rev Food Sci Nutr. 2014;54(1):17–23.
  • Wang Q, He P, Lu D, et al. Metabolic engineering of Torulopsis glabrata for improved pyruvate production. Enzyme Microb Technol. 2005;36(5–6):832–839.
  • Ogawa J, Soong CL, Ito M, et al. Enzymatic production of pyruvate from fumarate — an application of microbial cyclic-imide-transforming pathway. J Mol Catal B Enzym. 2001;11:355–359.
  • Hossain GS, Shin H, Li J, et al. Transporter engineering and enzyme evolution for pyruvate production from D/L-alanine with a whole- cell biocatalyst expressing L-amino acid deaminase from Proteus mirabilis. RSC Adv. 2016;6(2016):82676–82684.
  • Melis R, Rosini E, Pirillo V, et al. In vitro evolution of an l-amino acid deaminase active on l-1-naphthylalanine. Catal Sci Technol. 2018;8(20):5359–5367.
  • Liu L, Hossain GS, Shin HD, et al. One-step production of alpha-ketoglutaric acid from glutamic acid with an engineered L-amino acid deaminase from Proteus mirabilis. J Biotechnol. 2013;164(1):97–104.