8,632
Views
12
CrossRef citations to date
0
Altmetric
Special issue on International Conference on Sustainable Waste Treatment and Management (SWTM-2019)

New insights and rethinking of cinnabar for chemical and its pharmacological dynamics

, ORCID Icon, , ORCID Icon &
Pages 353-364 | Received 26 Jun 2019, Accepted 01 Aug 2019, Published online: 20 Aug 2019

References

  • Bi CBB, Turc B, Alphonse V, et al. Impact of microbial communities from tropical soils on the mobilization of trace metals during dissolution of cinnabar ore. J Environ Sci. 2017;56:122–130.
  • Li A, Zhang JY, Xiao X, et al. Hepatorenal protective effects of medicinal herbs in An-Gong-Niu-Huang Wan (AGNH) against cinnabar- and realgar-induced oxidative stress and inflammatory damage in mice. Food Chem Toxicol. 2018;119:445–456.
  • Liu J, Shi JZ, Yu LM, et al. Mercury in traditional medicines: is cinnabar toxicologically similar to common mercurials? Exp Biol Med . (Maywood). 2008;233(7):810–817.
  • Huang CF, Hsu CJ, Liu SH, et al. Exposure to low dose of cinnabar (a naturally occurring mercuric sulfide (HgS)) caused neurotoxicological effects in offspring mice. J Biomed Biotechnol. 2012;2012:1–12.
  • Young YH, Chuu JJ, Liu SH, et al. Neurotoxic mechanism of cinnabar and mercuric sulfide on the vestibulo-ocular reflex system of guinea pigs. Toxicol Sci. 2002;67:256–263.
  • Scott SD, Barnes HL. Hydrothermal growth of single crystals of cinnabar (red HgS). Mater Res Bull. 1969;4(12):897–903.
  • Paja̧ckowska A. Hydrothermal crystallization of cinnabar, HgS. J Cryst Growth. 1970;7(1):93–96.
  • Meim XD, Cao YF, Che YY, et al. Danshen: a phytochemical and pharmacological overview. Chin J Nat Med. 2019;17(1):59–80.
  • Tsantini E, Minami T, Takahashi K, et al. Analysis of sulphur isotopes to identify the origin of cinnabar in the Roman wall paintings from Badalona (Spain). J Archaeol Sci Rep. 2018;18:300–307.
  • Edner H, Ragnarson P, Svanberg S, et al. Atmospheric mercury mapping in a cinnabar mining area. Sci Total Environ. 1993;133(1–2):1–15.
  • Burger RL, Leikin JB. Cinnabar use in Prehispanic Peru and its possible health consequences. J Archaeol Sci Rep. 2018;17:730–734.
  • Huang CF, Liu SH, Shiau SYL. Neuro toxicological effects of cinnabar (a Chinese mineral medicine, HgS) in mice. Toxicol Appl Pharmacol. 2007;224(2):192–201.
  • Faile SP. Modified chemical vapor growth of cinnabar and GaP in closed systems. J Cryst Growth. 1978;43(1):129–132.
  • Ravichandran M, Aiken GR, Reddy MM, et al. Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida everglades. Environ Sci Technol. 1998;32:3305–3311.
  • Ballester A, Otero E, González F. Mercury extraction from cinnabar ores using hydrobromic acid. Hydrometallutgy. 1988;21(2):127–143.
  • Wang YJ, Li HY, Hu HF, et al. Using biochemical system to improve cinnabar dissolution. Bioresour Technol. 2013;132:1–4.
  • Yu WH, Zhang N, Qi JF, et al. Arsenic and mercury containing traditional chinese medicine (realgar and cinnabar) strongly inhibit organic anion transporters, Oat1 and Oat3, in vivo in mice. Biomed Res Int. 2015;2015:1–7.
  • Wei L, Liao P, Wu HF, et al. Toxicological effects of cinnabar in rats by NMR-based metabolic profiling of urine and serum. Toxicol Appl Pharmacol. 2008;227(3):417–429.
  • Wang HF, Bai J, Chen G, et al. A metabolic profiling analysis of the acute hepatotoxicity and nephrotoxicity of Zhusha Anshen Wan compared with cinnabar in rats using 1H NMR spectroscopy. J Ethnopharmacol. 2013;146(2):572–580.
  • Ávila A, Mansilla JF, Bosch P, et al. Cinnabar in Mesoamerica: poisoning or mortuary ritual. J Archaeol Sci. 2014;49:48–56.
  • Martínez RF, Larios R, Pinilla IG, et al. Mercury accumulation and speciation in plants and soils from abandoned cinnabar mines. Geoderma. 2015;253–254:30–38.
  • Wang Q, Yang X, Zhang B, et al. The anxiolytic effect of cinnabar involves changes of serotonin levels. Eur J Pharmacol. 2007;565(1–3):132–137.
  • Brik MG, Łach P, Karczewski G, et al. Theoretical studies of the pressure-induced zinc-blende to cinnabar phase transition in CdTe and thermodynamical properties of each phase. MCP. 2013;140(1):216–221.
  • Wang HF, Su GY, Chen G, et al. 1H NMR-based metabonomics of the protective effect of Curcuma longa and curcumin on cinnabar-induced hepatotoxicity and nephrotoxicity in rats. J Funct Foods. 2015;17:459–467.
  • Huang CF, Hsu CJ, Liu SH, et al. Ototoxicity induced by cinnabar (a naturally occurring HgS) in mice through oxidative stress and down-regulated Na+/K+-ATPase activities. Neurotoxicol. 2008;29(3):386–396.
  • Chen DD, Xie XF, Ao H, et al. Raman spectroscopy in quality control of Chinese herbal medicine. J Chin Med Assoc. 2017;80(5):288–296.
  • Zhou XR, Zeng K, Wang Q, et al. In vitro studies on dissolved substance of cinnabar: chemical species and biological properties. J Ethnopharmacol. 2010;131(1):196–202.
  • Waples JS, Nagy KL, Aiken GR, et al. Dissolution of cinnabar (HgS) in the presence of natural organic matter. GCA. 2005;69(6):1575–1588.
  • Zhou XR, Wang L, Sun XM, et al. Cinnabar is not converted into methylmercury by human intestinal bacteria. J Ethnopharmacol. 2011;135(1):110–115.
  • Lu Y, Yang D, Song X, et al. Bio accessibility and health risk assessment of mercury in cinnabar containing traditional Chinese medicines. J Trace Elem Med Biol. 2017;44:17–25.
  • Dan Y, Qian ZZ, Peng Y, et al. Revision and improvement of criterion on traditional Chinese medicines in Chinese Pharmacopoeia 2015. Chin Herb Med. 2016;8(3):196–208.
  • Chen Y, Yin YG, Shi JB, et al. Analytical methods, formation, and dissolution of cinnabar and its impact on environmental cycle of mercury. Crit Rev Environ Sci Technol. 2018;47(24):1–33.
  • Rai P, Rajput SJ. Preparation and physicochemical characterization of ingredients of Indian traditional medicine, Mahamrutyunjaya Rasa. J Ayurveda Integr Med. 2017;8(3):159–168.
  • Barkay T, Döbler IW. Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv Appl Microbiol. 2005;57:1–52.
  • Sarsaiya S, Shi J, Chen J. A comprehensive review on fungal endophytes and its dynamics on Orchidaceae plants: current research, challenges, and future possibilities. Bioengineered. 2019;10(1):316–334.
  • Lavery MJ, Wolf R. The life-threatening rash of poisoning. Clin Dermatol. 2019;37(2):136–147.
  • Liu Y, Luo G, He D. Clinical importance of S100A9 in osteosarcoma development and as a diagnostic marker and therapeutic target. Bioengineered. 2019;10(1):133–141.
  • Gao Y, Liang A, Fan XH, et al. Safety research in traditional Chinese medicine: methods, applications, and outlook. Engr. 2019;5(1):76–82.
  • Mazzocchin GA, Baraldi P, Barbante C. Isotopic analysis of lead present in the cinnabar of Roman wall paintings from the Xth Regio “(Venetia et Histria)” by ICP-MS. Talanta. 2008;74(4):690–693.
  • Kvaščev MG, Stojanović MM, Šmit Z, et al. New evidence for the use of cinnabar as a colouring pigment in the Vinča culture. J Archaeol Sci. 2012;39(4):1025–1033.
  • Elert K, Cardell C. Weathering behavior of cinnabar-based tempera paints upon natural and accelerated aging. Spectrochim Acta A Mol Biomol Spectrosc. 2019;216:236–248.
  • Poggiali F, Buonincontri MP, D’Auria A, et al. Wood selection for firesetting: first data from the neolithic cinnabar mine of spaccasasso (South Tuscany, Italy). Quat Int. 2017;458:134–140.
  • Zeng K, Wang Q, Yang X, et al. In vitro investigation on cinnabar dissolution. Front Chem Chin. 2007;2(4):349–353.
  • Emslie SD, Brasso R, Patterson WP, et al. Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar. Sci Rep. 2015;5:14679.