5,352
Views
29
CrossRef citations to date
0
Altmetric
Special issue on Algal Bioprocess Engineering

Controlled synthesis of iron oxyhydroxide (FeOOH) nanoparticles using secretory compounds from Chlorella vulgaris microalgae

, , ORCID Icon, , , & show all
Pages 390-396 | Received 10 Jul 2019, Accepted 20 Aug 2019, Published online: 09 Sep 2019

References

  • Xue D, Sethi R. Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro-and nanoparticles. J Nanopart Res. 2012;14(11). DOI:https://doi.org/10.1007/s11051-012-1239-0
  • Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, et al. Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloid Surf B. 2013;102:534–539.
  • Akbarzadeh A, Mikaeili H, Zarghami N, et al. Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. Int J Nanomedicine. 2012;2012(7):511–526.
  • Chertok B, Moffat BA, David AE, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials. 2008;29(4):487–496.
  • Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, et al. Impact of 3–aminopropyltriethoxysilane-coated iron oxide nanoparticles on menaquinone-7 production using B. subtilis. Nanomaterials. 2017;7(11). DOI:https://doi.org/10.3390/nano7110350
  • Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, et al. Reduced biofilm formation in menaquinone-7 production process by optimizing the composition of the cultivation medium. Trend Pharm Sci. 2017;3(4):245–254.
  • Seifan M, Ebrahiminezhad A, Ghasemi Y, et al. Amine-modified magnetic iron oxide nanoparticle as a promising carrier for application in bio self-healing concrete. Appl Microbiol Biotechnol. 2017;102(1):175–184.
  • Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, et al. Magnetic immobilization of bacteria using iron oxide nanoparticles. Biotechnol Lett. 2017;40(2):237–248.
  • Ebrahiminezhad A, Varma V, Yang S, et al. Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation. Appl Microbiol Biotechnol. 2016;100(1):173–180.
  • Ebrahiminezhad A, Varma V, Yang S, et al. Synthesis and application of amine functionalized iron oxide nanoparticles on menaquinone-7 fermentation: a step towards process intensification. Nanomaterials. 2015;6(1):1–9.
  • Green A, Isseroff R, Lin S, et al. Synthesis and characterization of iron nanoparticles on partially reduced graphene oxide as a cost-effective catalyst for polymer electrolyte membrane fuel cells. MRS Commun. 2017;7(2):166–172.
  • An B, Liang Q, Zhao D. Removal of arsenic (V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles. Water Res. 2011;45(5):1961–1972.
  • Obregón S, Mendoza-Reséndez R, Luna C. Facile synthesis of ultrafine akaganeite nanoparticles for the removal of hexavalent chromium: adsorption properties, isotherm and kinetics. J Nanosci Nanotechnol. 2017;17(7):4471–4479.
  • Singh P, Tiwary D, Sinha I. Improved removal of Cr (VI) by starch functionalized iron oxide nanoparticles. J Environ Chem Eng. 2014;2(4):2252–2258.
  • Wu S, Fu F, Cheng Z, et al. Removal of Cr (VI) from wastewater by FeOOH supported on Amberlite IR120 resin. Desalin Water Treat. 2016;57(38):17767–17773.
  • Yusan SD, Akyil S. Sorption of uranium (VI) from aqueous solutions by akaganeite. J Hazard Mater. 2008;160(2–3):388–395.
  • Ghosh MK, Poinern GEJ, Issa TB, et al. Arsenic adsorption on goethite nanoparticles produced through hydrazine sulfate assisted synthesis method. Korean J Chem Eng. 2012;29(1):95–102.
  • Nguyen V, Kynicky J, Ambrozova P, et al. Microwave-assisted synthesis of goethite nanoparticles used for removal of Cr(VI) from aqueous solution. Materials. 2017;10(7):783.
  • Adegoke H, Adekola F, Ashola M. Adsorptive removal of hexavalent chromium using synthetic goethite nanoparticles. Niger J Chem Res. 2018;23(2):20–38.
  • Ahmmad B, Leonard K, Islam MS, et al. Green synthesis of mesoporous hematite (α-Fe2O3) nanoparticles and their photocatalytic activity. Adv Powder Technol. 2013;24(1):160–167.
  • Mohapatra M, Anand S. Synthesis and applications of nano-structured iron oxides/hydroxides – a review. Int J Eng Sci Technol. 2010;2(8):127–146.
  • Fan H, Song B, Yang Z, et al. Fast inducing synthesis of spherical superparamagnetic β-FeOOH nanoparticles without aggregation. Chem Lett. 2004;33(5):576–577.
  • Chai L, Han N, Wei L, et al. Hydrothermal synthesis of β-FeOOH with different morphologies using NaH 2 PO 4 as structural modifier. J Wuhan Univ Technol Mater Sci Ed. 2012;27(4):662–664.
  • Luna C, Ilyn M, Vega V, et al. Size distribution and frustrated antiferromagnetic coupling effects on the magnetic behavior of ultrafine akaganéite (β-FeOOH) nanoparticles. J Phys Chem C. 2014;118(36):21128–21139.
  • Kianpour S, Ebrahiminezhad A, Mohkam M, et al. Physicochemical and biological characteristics of the nanostructured polysaccharide-iron hydrogel produced by microorganism Klebsiella oxytoca. J Basic Microbiol. 2016;2016(56):132–140.
  • Kianpour S, Ebrahiminezhad A, Negahdaripour M, et al. Characterization of biogenic Fe (III)‐binding exopolysaccharide nanoparticles produced by Ralstonia sp. SK03. Biotechnol Prog. 2018;34(5):1167–1176.
  • Ebrahiminezhad A, Bagheri M, Taghizadeh S-M, et al. Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Adv Nat Sci Nanosci Nanotechnol. 2016;7. DOI:https://doi.org/10.1088/2043-6262/7/1/015018.
  • Xie J, Lee JY, Wang DI, et al. Silver nanoplates: from biological to biomimetic synthesis. ACS Nano. 2007;1(5):429–439.
  • Xie J, Lee JY, Wang DI, et al. Identification of active biomolecules in the high‐yield synthesis of single‐crystalline gold nanoplates in algal solutions. Small. 2007;3(4):672–682.
  • Cai J, Liu J, Gao Z, et al. Synthesis and anion exchange of tunnel structure akaganeite. Chem Mater. 2001;13(12):4595–4602.
  • Parameshwari R, Priyadarshini P, Chandrasekaran G. Optimization, structural, spectroscopic and magnetic studies on stable akaganeite nanoparticles via co-precipitation method. Am J Mater Sci. 2011;1(1):18–25.
  • Kasparis G, Erdocio AS, Tuffnell JM, et al. Synthesis of size-tuneable β-FeOOH nanoellipsoids and a study of their morphological and compositional changes by reduction. CrystEngComm. 2019;21(8):1293–1301.
  • Liu Z, Puumala E, Chen A. Sensitive electrochemical detection of Hg (II) via a FeOOH modified nanoporous gold microelectrode. Sens Actuators B Chem. 2019;287:517–525.
  • Lee CW, Wu PC, Hsu IL, et al. New templated Ostwald ripening process of mesostructured FeOOH for third‐harmonic generation bioimaging. Small. 2019;15(20). DOI:https://doi.org/10.1002/smll.201805086
  • Raee MJ, Ebrahiminezhad A, Gholami A, et al. Magnetic immobilization of recombinant E. coli producing extracellular asparaginase: an effective way to intensify downstream process. Sep Sci Technol. 2018;53(9):1–8.
  • Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, et al. The effect of iron oxide nanoparticles on Bacillus subtilis biofilm, growth and viability. Process Biochem. 2017;62(2017):231–240.
  • Kim J, Ilott AJ, Middlemiss DS, et al. 2H and 27Al solid-state NMR study of the local environments in Al-doped 2-line ferrihydrite, goethite, and lepidocrocite. Chem Mater. 2015;27(11):3966–3978.
  • Bakoyannakis D, Deliyanni E, Zouboulis A, et al. Akaganeite and goethite-type nanocrystals: synthesis and characterization. Microporous Mesoporous Mater. 2003;59(1):35–42.
  • Xiao M, Zhao Y, Li S. Facile synthesis of chrysanthemum-like mesoporous α-FeOOH and its adsorptive behavior of antimony from aqueous solution. J Dispers Sci Technol. 2019;1–9.
  • Xu Z, Xie M, Ben Y, et al. Efficiency and mechanism of atenolol decomposition in Co-FeOOH catalytic ozonation. J Hazard Mater. 2019;365:146–154.