10,841
Views
105
CrossRef citations to date
0
Altmetric
Special issue on Algal Bioprocess Engineering

Bio-processing of algal bio-refinery: a review on current advances and future perspectives

, ORCID Icon, , , & ORCID Icon
Pages 574-592 | Received 02 Aug 2019, Accepted 03 Oct 2019, Published online: 31 Oct 2019

References

  • Pimentel D, Marklein A, Toth MA, et al. Food versus biofuels: environmental and economic costs. Hum Ecol. 2009;37:1.
  • Hariskos I, Posten C. Biorefinery of microalgae – opportunities and constraints for different production scenarios. Biotechnol J. 2014;9:739–752.
  • Hill J, Nelson E, Tilman D, et al. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci. 2006;103:11206–11210.
  • Ajanovic A. Biofuels versus food production: does biofuels production increase food prices? Energy. 2011;36:2070–2076.
  • Dias MOS, Junqueira TL, Cavalett O, et al. Cogeneration in integrated first and second generation ethanol from sugarcane. Chem Eng Res Des. 2013;91:1411–1417.
  • Abels C, Carstensen F, Wessling M. Membrane processes in biorefinery applications. J Memb Sci. 2013;444:285–317.
  • Menon V, Rao M. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci. 2012;38:522–550.
  • Lee RA, Lavoie J-M. From first- to third-generation biofuels: challenges of producing a commodity from a biomass of increasing complexity. Anim Front. 2013;3:6–11.
  • Gour RS, Bairagi M, Garlapati VK, et al. Enhanced microalgal lipid production with media engineering of potassium nitrate as a nitrogen source. Bioengineered. 2018;9:98–107.
  • Ji M-K, Abou-Shanab RAI, Kim S-H, et al. Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecol Eng. 2013;58:142–148.
  • Dillschneider R, Steinweg C, Rosello-Sastre R, et al. Biofuels from microalgae: photoconversion efficiency during lipid accumulation. Bioresour Technol. 2013;142:647–654.
  • Brennan L, Owende P. Biofuels from microalgae — A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable Sustainable Energy Rev. 2010;14:557–577.
  • Gabriel Acien Fernandez F, González-López CV, Fernández Sevilla JM, et al. Conversion of CO 2 into biomass by microalgae: how realistic a contribution may it be to significant CO 2 removal?. Appl Microbiol Biotechnol. 2012;96:577–586.
  • Suganya T, Varman M, Masjuki HH, et al. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable Sustainable Energy Rev. 2016;55:909–941.
  • Show KY, Yan Y, Ling M, et al. Hydrogen production from algal biomass – advances, challenges and prospects. Bioresour Technol. 2018;257:290–300.
  • Melis A, Zhang L, Forestier M, et al. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 2000;122:127–136.
  • Raheem A, Wan Azlina WAKG, Taufiq Yap YH, et al. Optimization of the microalgae Chlorella vulgaris for syngas production using central composite design. RSC Adv. 2015;5:71805–71815.
  • Goyal HB, Seal D, Saxena RC. Bio-fuels from thermochemical conversion of renewable resources: A review. Renewable Sustainable Energy Rev. 2008;12:504–517.
  • Kadam K. Environmental implications of power generation via coal-microalgae cofiring. Energy. 2002;27:905–922.
  • Cabanelas ITD, Arbib Z, Chinalia FA, et al. From waste to energy: microalgae production in wastewater and glycerol. Appl Energy. 2013;109:283–290.
  • Baicha Z, Salar-García MJ, Ortiz-Martínez VM, et al. A critical review on microalgae as an alternative source for bioenergy production: A promising low cost substrate for microbial fuel cells. Fuel Process Technol. 2016;154:104–116.
  • Cheah WY, Show PL, Ling TC, et al. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour Technol. 2015;184:190–201.
  • Khoo HH, Koh CY, Shaik MS, et al. Bioenergy co-products derived from microalgae biomass via thermochemical conversion – life cycle energy balances and CO2 emissions. Bioresour Technol. 2013;143:298–307.
  • Vanthoor-Koopmans M, Wijffels RH, Barbosa MJ, et al. Biorefinery of microalgae for food and fuel. Bioresour Technol. 2013;135:142–149.
  • Wayne K, Ying J, Loke P, et al. Bioresource Technology Microalgae biorefinery : high value products perspectives. Bioresour Technol. 2017;229:53–62.
  • Jaswir I. Anti-inflammatory compounds of macro algae origin: A review. J Med Plants Res. 2011;5:7146–7154.
  • Jha D, Jain V, Sharma B, et al. Microalgae-based Pharmaceuticals and Nutraceuticals: an Emerging Field with Immense Market Potential. Chem Bio Eng Rev. 2017;4:257–272.
  • Begum H, Yusoff FMD, Banerjee S, et al. Availability and Utilization of Pigments from Microalgae. Crit Rev Food Sci Nutr. 2016;56:2209–2222.
  • Yen H-W, Hu I-C, Chen C-Y, et al. Microalgae-based biorefinery – from biofuels to natural products. Bioresour Technol. 2013;135:166–174.
  • Wichuk K, Brynjólfsson S, Fu W. Biotechnological production of value-added carotenoids from microalgae. Bioengineered. 2014;5:204–208.
  • Juan JC, Kartika DA, Wu TY, et al. Biodiesel production from jatropha oil by catalytic and non-catalytic approaches: an overview. Bioresour Technol. 2011;102:452–460.
  • González-Delgado Á-D, Kafarov V. MICROALGAE BASED BIOREFINERY: ISSUES TO CONSIDER. Tecnol Y Futur. 2011;4:5–22.
  • Benemann J. Microalgae for Biofuels and Animal Feeds. Energies. 2013;6:5869–5886.
  • Wang X, Lin L, Lu H, et al. Microalgae cultivation and culture medium recycling by a two-stage cultivation system. Front Environ Sci Eng. 2018;12:1–14.
  • Hsia S-Y, Yang S-K. Enhancing Algal Growth by Stimulation with LED Lighting and Ultrasound. J Nanomater. 2015;2015:1–11.
  • Aravantinou AF, Manariotis ID. Effect of operating conditions on Chlorococcum sp. growth and lipid production. J Environ Chem Eng. 2016;4:1217–1223.
  • Jacob-Lopes E, Merida LGR, Queiroz MI, et al. Microalgae biorefineries. In: Jacob-Lopez E, Zepka LQ, editos. Biomass Production and Uses. InTech Open; 2015. p. 81–106.
  • Spolaore P, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae. J Biosci Bioeng. 2006;101:87–96.
  • Gouveia L, Batista AP, Sousa I, et al. In: Papadopoulos KN, editor. Microalgae in novel food product. In: Food chemistry research developments. New York, NY: Nova Science Publishers, Inc.; 2008. p. 1–37.
  • Mata TM, Nio Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: A review. Renewable Sustainable Energy Rev. 2009;14:217–232.
  • Bruton T. A review of the potential of marine algae as a source of biofuel in Ireland. Ireland: Sustainable Energy Ireland; 2009.
  • Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable Sustainable Energy Rev. 2013;19:360–369.
  • Li Y, Horsman M, Wang B, et al. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol. 2008;81:629–636.
  • Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008;54:621–639.
  • Zhang J, Fang X, Zhu X-L, et al. Microbial lipid production by the oleaginous yeast Cryptococcus curvatus O3 grown in fed-batch culture. Biomass Bioenergy. 2011;35:1906–1911.
  • Fakas S, Papanikolaou S, Batsos A, et al. Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy. 2009;33:573–580.
  • Kwak HS, Kim JYH, Woo HM, et al. Synergistic effect of multiple stress conditions for improving microalgal lipid production. Algal Res. 2016;19:215–224.
  • Adam F, Abert-Vian M, Peltier G, et al. “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: A green, clean and scalable process. Bioresour Technol. 2012;114:457–465.
  • Biller P, Friedman C, Ross AB. Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products. Bioresour Technol. 2013;136:188–195.
  • Hernández D, Solana M, Riaño B, et al. Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach. Bioresour Technol. 2014;170:370–378.
  • Mendes RL, Reis AD, Palavra AF. Supercritical CO2 extraction of γ-linolenic acid and other lipids from Arthrospira (Spirulina)maxima: comparison with organic solvent extraction. Food Chem. 2006;99:57–63.
  • Lin H, Wang Q, Shen Q, et al. Genetic engineering of microorganisms for biodiesel production. Bioengineered. 2013;4:292–304.
  • Muthukumaran C, Sharmila G, Manojkumar N, et al. Optimization and kinetic modeling of biodiesel production. Ref Modul Mater Sci Mater Eng. 2018.
  • Chen C-L, Change J-S, Huang -C-C, et al. A novel biodiesel production method consisting of oil extraction and transesterification from wet microalgae. Energy Procedia. 2014;61:1294–1297.
  • Huang GH, Chen F, Wei D, et al. Biodiesel production by microalgal biotechnology. Appl Energy. 2010;87:38–46.
  • Surendhiran D, Razack Sirajunnisa A, Vijay M. An alternative method for production of microalgal biodiesel using novel Bacillus lipase. Biotechnology. 2015;5:715–725.
  • Behzadi S, Farid MM. Review: examining the use of different feedstock for the production of biodiesel. Asia-Pacific J Chem Eng. 2007;2:480–486.
  • Zhang Y, Dubé MA, McLean DD, et al. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour Technol. 2003;89:1–16.
  • Zhang Y, Dubé MA, McLean DD, et al. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol. 2003;90:229–240.
  • Van Gerpen J. Biodiesel processing and production. Fuel Process Technol. 2005;86:1097–1107.
  • Goff MJ, Bauer NS, Lopes S, et al. Acid-catalyzed alcoholysis of soybean oil. J Am Oil Chem Soc. 2004;81:415–420.
  • Wahlen BD, Willis RM, Seefeldt LC. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol. 2011;102:2724–2730.
  • Tran D-T, Yeh K-L, Chen C-L, et al. Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase. Bioresour Technol. 2012;108:119–127.
  • Tran D-T, Chen C-L. Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst. Bioresour Technol. 2013;135:213–221.
  • Eyster KM. The membrane and lipids as integral participants in signal transduction: lipid signal transduction for the non-lipid biochemist. Adv Physiol Educ. 2007;31:5–16.
  • Holdt SL, Kraan S. Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol. 2011;23:543–597.
  • García JL, de Vicente M, Galán B. Microalgae, old sustainable food and fashion nutraceuticals. Microb Biotechnol. 2017;10:1017–1024.
  • Caporgno MP, Mathys A. Trends in microalgae incorporation into innovative food products with potential health benefits. Front Nutr. 2018;5:1–10.
  • Vaz B Da S, Moreira JB, Morais MG, et al. Microalgae as a new source of bioactive compounds in food supplements. Curr Opin Food Sci. 2016;7:73–77.
  • Sun GY, Simonyi A, Fritsche KL, et al. Docosahexaenoic acid (DHA): an essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot Essent Fat Acids. 2018;136:3–13.
  • Echeverría F, Valenzuela R, Catalina Hernandez-Rodas M, et al. Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: new dietary sources. Prostaglandins Leukot Essent Fat Acids. 2017;124:1–10.
  • Adarme-Vega TC, Lim DKY, Timmins M, et al. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Fact. 2012;11:1–10.
  • Rossoll D, Bermúdez R, Hauss H, et al. Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS One. 2012;7:1–6.
  • Ryckebosch E, Bruneel C, Termote-Verhalle R, et al. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem. 2014;160:393–400.
  • Chochois V, Dauvillée D, Beyly A, et al. Hydrogen production in chlamydomonas: photosystem ii-dependent and -independent pathways differ in their requirement for starch metabolism. Plant Physiol. 2009;151:631–640.
  • Schepetkin IA, Quinn MT. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol. 2006;6:317–333.
  • Park JK, Kim Z-H, Lee CG, et al. Characterization and immunostimulating activity of a water-soluble polysaccharide isolated from Haematococcus lacustris. Biotechnol Bioprocess Eng. 2011;16:1090–1098.
  • Tannin-Spitz T, Bergman M, van-Moppes D, et al. Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp.. J Appl Phycol. 2005;17:215–222.
  • Matsui MS, Muizzuddin N, Arad S, et al. Sulfated polysaccharides from red microalgae have antiinflammatory properties in vitro and in vivo. Appl Biochem Biotechnol. 2003;104:13–22.
  • Kim M, Yim JH, Kim S-Y, et al. In vitro inhibition of influenza A virus infection by marine microalga-derived sulfated polysaccharide p-KG03. Antiviral Res. 2012;93:253–259.
  • Miranda JR, Passarinho PC, Gouveia L. Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production. Appl Microbiol Biotechnol. 2012;96:555–564.
  • Chen C-Y, Zhao X-Q, Yen H-W, et al. Microalgae-based carbohydrates for biofuel production. Biochem Eng J. 2013;78:1–10.
  • Simas-Rodrigues C, Villela HDM, Martins AP, et al. Microalgae for economic applications: advantages and perspectives for bioethanol. J Exp Bot. 2015;66:4097–4108.
  • Ueno Y, Kurano N, Miyachi S. Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale. J Ferment Bioeng. 1998;86:38–43.
  • Markou G, Angelidaki I, Georgakakis D. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol. 2012;96:631–645.
  • Hirano A, Ueda R, Hirayama S, et al. CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy. 1997;22:137–142.
  • Arad S (Malis). Levy-Ontman O. Red microalgal cell-wall polysaccharides: biotechnological aspects. Curr Opin Biotechnol. 2010;21:358–364.
  • Bleakley S, Hayes M. Algal proteins: extraction, application, and challenges concerning production. Foods. 2017;6:1–34.
  • De Vries M, De Boer IJM. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest Sci. 2009;128:1–11.
  • van Krimpen MM, Bikker P, van der Meer IM, et al. Cultivation, processing and nutritional aspects for pigs and poultry of European protein sources as alternatives for imported soybean products [Internet]. Wageningen: Wageningen University & Research; 2013.
  • Smetana S, Sandmann M, Rohn S, et al. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment. Bioresour Technol. 2017;245:162–170.
  • Koyande AK, Chew KW, Lim J, et al. Optimization of protein extraction from Chlorella Vulgaris via novel sugaring‐out assisted liquid biphasic electric flotation system. Eng Life Sci. 2019;1–10.
  • Bjornsson WJ, MacDougall KM, Melanson JE, et al. Pilot-scale supercritical carbon dioxide extractions for the recovery of triacylglycerols from microalgae: a practical tool for algal biofuels research. J Appl Phycol. 2012;24:547–555.
  • Faried M, Samer M, Abdelsalam E, et al. Biodiesel production from microalgae: processes, technologies and recent advancements. Renewable Sustainable Energy Rev. 2017;79:893–913.
  • Barsanti L, Gualtieri P. Is exploitation of microalgae economically and energetically sustainable? Algal Res. 2018;31:107–115.
  • Jorquera O, Kiperstok A, Sales EA, et al. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol. 2010;101:1406–1413.
  • Tredici MR, Bassi N, Prussi M, et al. Energy balance of algal biomass production in a 1-ha “Green Wall Panel” plant: how to produce algal biomass in a closed reactor achieving a high Net Energy Ratio. Appl Energy. 2015;154:1103–1111.
  • Bennion EP, Ginosar DM, Moses J, et al. Lifecycle assessment of microalgae to biofuel: comparison of thermochemical processing pathways. Appl Energy. 2015;154:1062–1071.
  • Chowdhury R, Franchetti M. Life cycle energy demand from algal biofuel generated from nutrients present in the dairy waste. Sustain Prod Consum. 2017;9:22–27.
  • Soh L, Montazeri M, Haznedaroglu BZ, et al. Evaluating microalgal integrated biorefinery schemes: empirical controlled growth studies and life cycle assessment. Bioresour Technol. 2014;151:19–27.
  • Hoffman J, Pate RC, Drennen T, et al. Techno-economic assessment of open microalgae production systems. Algal Res. 2017;23:51–57.
  • Dasan YK, Lam MK, Yusup S, et al. Life cycle evaluation of microalgae biofuels production: effect of cultivation system on energy, carbon emission and cost balance analysis. Sci Total Environ. 2019;688:112–128.
  • T Lam GP, Vermuë MH, Eppink MHM, et al. Multi-product microalgae biorefineries: from concept towards reality. Trends Biotechnol. 2018;36:216–227.
  • Gifuni I, Pollio A, Safi C, et al. Current bottlenecks and challenges of the microalgal biorefinery. Trends Biotechnol. 2019;37:242–252.
  • Lupatini AL, de Oliveira Bispo L, Colla LM, et al. Protein and carbohydrate extraction from S. platensis biomass by ultrasound and mechanical agitation. Food Res Int. 2017;99:1028–1035.
  • Gilbert-López B, Mendiola JA, van Den Broek LAM, et al. Green compressed fluid technologies for downstream processing of Scenedesmus obliquus in a biorefinery approach. Algal Res. 2017;24:111–121.
  • Dong T, Knoshaug EP, Davis R, et al. Combined algal processing: A novel integrated biorefinery process to produce algal biofuels and bioproducts. Algal Res. 2016;19:316–323.
  • Misra N, Panda PK, Parida BK, et al. Way forward to achieve sustainable and cost-effective biofuel production from microalgae: a review. Int J Environ Sci Technol. 2016;13:2735–2756.
  • Ahmad Ansari F, Shriwastav A, Kumar Gupta S, et al. Exploration of microalgae biorefinery by optimizing sequential extraction of major metabolites from scenedesmus obliquus. Ind Eng Chem Res. 2017;56:3407–3412.
  • van der Spiegel M, Noordam MY, van der Fels-Klerx HJ. Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production. Compr Rev Food Sci Food Saf. 2013;12:662–678.
  • Vigani M, Parisi C, Rodríguez-Cerezo E, et al. Food and feed products from micro-algae: market opportunities and challenges for the EU. Trends Food Sci Technol. 2015;42:81–92.
  • Ruiz JS, Olivieri G, De Vree J, et al. Towards industrial products from microalgae. Energy Environ Sci. 2016;9:3034–3036.
  • Chacón-Lee TL, González-Mariño GE. Microalgae for “Healthy” Foods—possibilities and Challenges. Compr Rev Food Sci Food Saf. 2010;9:655–675.
  • Fasaei F, Bitter JH, Slegers PM, et al. Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res. 2018;31:347–362.
  • Xu L, Weathers PJ, Xiong X-R, et al. Microalgal bioreactors: challenges and opportunities. Eng Life Sci. 2009;9:178–189.
  • Wang B, Lan CQ, Horsman M. Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv. 2012;30:904–912.
  • Glemser M, Heining M, Schmidt J, et al. Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives. Appl Microbiol Biotechnol. 2016;100:1077–1088.
  • Sun Y, Huang Y, Liao Q, et al. Enhancement of microalgae production by embedding hollow light guides to a flat-plate photobioreactor. Bioresour Technol. 2016;207:31–38.
  • Gouveia L, Raymundo A, Batista AP, et al. Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. Eur Food Res Technol. 2005;222:362.
  • Raymundo A, Gouveia L, Batista AP, et al. Fat mimetic capacity of Chlorella vulgaris biomass in oil-in-water food emulsions stabilized by pea protein. Food Res Int. 2005;38:961–965.
  • Beheshtipour H, Mortazavian AM, Mohammadi R, et al. Supplementation of Spirulina platensis and Chlorella vulgaris Algae into Probiotic Fermented Milks. Compr Rev Food Sci Food Saf. 2013;12:144–154.
  • Varga L, Szigeti J, Ková R, et al. Influence of a Spirulina platensis Biomass on the Microflora of Fermented ABT Milks During Storage (R1). J Dairy Sci. 2002;85:1031–1038.
  • Fradique M, Batista AP, Nunes MC, et al. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: preparation and evaluation. J Sci Food Agric. 2010;90:1656–1664.
  • Peng W, Wu Q, Tu P. Effects of temperature and holding time on production of renewable fuels from pyrolysis of Chlorella protothecoides. J Appl Phycol. 2000;12:147–152.
  • Pan P, Hu C, Yang W, et al. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresour Technol. 2010;101:4593–4599.
  • Vardon DR, Sharma BK, Blazina GV, et al. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour Technol. 2012;109:178–187.
  • Grierson S, Strezov V, Shah P. Properties of oil and char derived from slow pyrolysis of Tetraselmis chui. Bioresour Technol. 2011;102:8232–8240.
  • Grierson S, Strezov V, Ellem G, et al. Thermal characterisation of microalgae under slow pyrolysis conditions. J Anal Appl Pyrolysis. 2009;85:118–123.
  • Miao X, Wu Q. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol. 2004;110:85–93.
  • Miao X, Wu Q, Yang C. Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrolysis. 2004;71:855–863.
  • Du Z, Li Y, Wang X, et al. Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour Technol. 2011;102:48904896.
  • Hu Z, Ma X, Chen C. A study on experimental characteristic of microwave-assisted pyrolysis of microalgae. Bioresour Technol. 2012;107:487–493.
  • Biller P, Ross AB. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol. 2011;102:215–225.
  • Zou S, Wu Y, Yang M, et al. Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy. 2010;35:5406–5411.
  • Brown TM, Duan P, Savage PE. Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuels. 2010;24:3639–3646.
  • Becker EW Microalgae for human and animal nutrition [Internet]. In: Richmond A, Emeritus, Hu Q, editors. Handbook of microalgal culture. John Wiley & Sons, Ltd; 2013. p. 461–503.
  • Christaki E, Florou-Paneri P, Bonos E. Microalgae: A novel ingredient in nutrition. Int J Food Sci Nutr. 2011;62:794–799.
  • Martins A, Caetano NS, Mata TM. Microalgae for biodiesel production and other applications : A review. Renewable Sustainable Energy Rev. 2010;14:217–232.
  • Cerón-García MC, Macías-Sánchez MD, Sánchez-Mirón A, et al. A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source. Appl Energy. 2013;103:341–349.
  • Feng P, Deng Z, Fan L, et al. Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations. J Biosci Bioeng. 2012;114:405–410.
  • Dragone G, Fernandes BD, Abreu AP, et al. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy. 2011;88:3331–3335.
  • Batista AP, Bandarra N, Raymundo A, et al. Microalgae biomass - a potential ingredient for the food industry. In: EFFoST/EHED Joint Conference. Lisbon, Portugal: 2007.
  • Koyande AK, Chew KW, Rambabu K, et al. Microalgae: A potential alternative to health supplementation for humans. Food Sci Hum Wellness. 2019;8:16–24.
  • Guzmán S, Gato A, Lamela M, et al. Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phyther Res. 2003;17:665–670.
  • Mohamed ZA. Polysaccharides as a protective response against microcystin-induced oxidative stress in Chlorella vulgaris and Scenedesmus quadricauda and their possible significance in the aquatic ecosystem. Ecotoxicology. 2008;17:504.
  • Lee C-K, Kim HS, Nam JR, et al. Anti-picornavirus activity and other antiviral activity of sulfated exopolysaccharide from the marine microalga gyrodinium impudicum strain KG03. Antiviral Res. 2009;82:A40.
  • Chen B, You W, Huang J, et al. Isolation and antioxidant property of the extracellular polysaccharide from Rhodella reticulata. World J Microbiol Biotechnol. 2010;26:833–840.
  • Söyler N, Goldfarb JL, Ceylan S, et al. Renewable fuels from pyrolysis of Dunaliella tertiolecta: an alternative approach to biochemical conversions of microalgae. Energy. 2017;120:907–914.
  • Gilbert-López B, Mendiola JA, Fontecha J, et al. Downstream processing of Isochrysis galbana: a step towards microalgal biorefinery. Green Chem. 2015;17:4599–4609.
  • Li J, Liu Y, Cheng JJ, et al. Biological potential of microalgae in China for biorefinery-based production of biofuels and high value compounds. N Biotechnol. 2015;32:588–596.
  • Nobre BP, Villalobos F, Barragán BE, et al. A biorefinery from Nannochloropsis sp. microalga – extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour Technol. 2013;135:128–136.
  • Posada JA, Brentner LB, Ramirez A, et al. Conceptual design of sustainable integrated microalgae biorefineries: parametric analysis of energy use, greenhouse gas emissions and techno-economics. Algal Res. 2016;17:113–131.
  • Naresh Kumar A, Min B, Venkata Mohan S. Defatted algal biomass as feedstock for short chain carboxylic acids and biohydrogen production in the biorefinery format. Bioresour Technol. 2018;269:408–416.