8,866
Views
19
CrossRef citations to date
0
Altmetric
Review

Emerging strategies for the development of food industries

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 522-537 | Received 06 Aug 2019, Accepted 07 Oct 2019, Published online: 30 Oct 2019

References

  • Morata Barrado A. New Food Consevation Technologies. Vol. 2. Madrid, España: A. Madrid Vicente Ediciones; 2010.
  • Knorr D. Effects of high-hydrostatic-pressure processes on food safety and quality. Food Technol. 1993;47(6):156–161.
  • Hoover DG. Minimally processed fruits and vegetables: reducing microbial load by non-thermal physical treatments. Food Technol. 1997;51(6):66–71.
  • Meyer RS, Cooper KL, Knorr D, et al. High pressure sterilization of foods. Food Technol. 2000;54(11):67–71.
  • Cheftel JC. Review: high-pressure, microbial inactivation and food preservation. Food Sci Technol Int. 1995;1:75–90.
  • Kimura K, Ida M, Yosida Y, et al. Comparison of keeping quality between pressure-processed jam and heat-processed jam: changes in flavor components, hue, and nutrients during storage. Biosci Biotech Biochem. 1994;58(8):1386–1391.
  • Xie F, Zhang W, Lan X, et al. Effects of high hydrostatic pressure and high pressure homogenization processing on characteristics of potato peel waste pectin. Carbohydr Polym. 2018;196:474–482.
  • Briones-Labarca V, Giovagnoli-Vicuña C, Cañas-Sarazúa R. Optimization of extraction yield, flavonoids and lycopene from tomato pulp by high hydrostatic pressure-assisted extraction. Food Chem. 2019;278:751–759.
  • Gayán E, Govers S, Aertsen A. Impact of high hydrostatic pressure on bacterial proteostasis. Biophys Chem. 2017;231:3–9.
  • Ozturk S, Kong F, Singh R, et al. Dielectric properties, heating rate, and heating uniformity of various seasoning spices and their mixtures with radio frequency heating. J Food Eng. 2018;228:128–141.
  • Ling B, Lyng J, Wnag S. Radio-frequency treatment for stabilization of wheat germ: dielectric properties and heating uniformity. Innovative Food Sci Emerging Technol. 2018;48:66–67.
  • Ozturk S, Kong F, Singh R, et al. Radio frequency heating of corn flour: heating rate and uniformity. Innovative Food Sci Emerging Technol. 2017;44:191–201.
  • Martínez-López S, Lucas-Abellán C, Serrano-Martínez A, et al. Pulsed light for a cleaner dyeing industry: azo dye degradation by an advanced oxidation process driven by pulsed light. J Clean Prod. 2019;217:757–766.
  • Chen D, Chen Y, Peng P, et al. E?ects of intense pulsed light on Cronobacter sakazakii and Salmonella surrogate Enterococcus faecium inoculated in di?erent powdered foods. Food Chem. 2019;296:23–28.
  • Jo H, Hwang H, Chung M. Inactivation of Bacillus subtilis spores at various germination and outgrowth stages using intense pulsed light. Food Microbiol. 2019;82:409–415.
  • Settanni L, Corsetti A. Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol. 2008;121(2):123–138.
  • García P, Rodríguez L, Rodríguez A, et al. Food biopreservation: promising strategies using bacteriocins, bacteriophages and endolysins. Trends Food SciTechnol. 2010;21:373–382.
  • Savadogo A, Ouattara C, Bassole I, et al. Bacteriocins and lactic acid bacterias - a minireview. J Biotechnol. 2006;5(9):678–683.
  • Wang Y, Sun Y, Zhang X, et al. Bacteriocin-producing probiotics enhance the safety and functionality of sturgeon sausage. Food Control. 2015;50:729–735. Elsevier Ltd.
  • Avaiyarasi ND, Ravindran AD, Venkatesh P, et al. In vitro selection, characterization and cytotoxic effect of bacteriocin of Lactobacillus sakei GM3 isolated from goat milk. Food Control. 2016;69:124–133. Elsevier Ltd.
  • Salvucci E, Rossi M, Colombo A, et al. Triticale ?our ?lms added with bacteriocin-like substance (BLIS) for active food packaging applications. Food Pack Shelf Life. 2019;19:193–199.
  • Ahmad V, Ahmad K, Baig M, et al. Efficacy of a novel bacteriocin isolated from Lysinibacillus sp. against Bacillus pumilus. LWT - Food Sc Technol. 2019;102:260–267.
  • Quintero J, Falguera V, Muñoz A. Películas y recubrimientos comestibles?: importancia y tendencias recientes en la cadena hortofrutícola. Revista Tumbaga. 2010;5:93–118.
  • Martins S, Aguilar CN, De la Garza I, et al. Kinetic study of nordihydroguaiaretic acid recovery from Larrea tridentata by microwave-assisted extraction. J Chem Technol Biotechnol. 2010;85:1142–1147.
  • Yan MM, Liu W, Fu YJ, et al. Optimisation of the microwave-assisted extraction process for four main astragalosides in Radix Astragali. Food Chem. 2010;119:1663–1670.
  • Xia E, Ai X, Zang S, et al. Ultrasound-assisted extraction of phillyrin from Forsythia suspensa. Ultrason Sonochem. 2011;18:549–552.
  • Chan CH, Yusoff R, Ngoh G, et al. Microwave-assisted extractions of active ingredients from plants. J Chromatogr A. 2011;1218(37):6213–6225.
  • Perino S, Huma Z, Abert M, et al. Solvent Free Microwave-Assisted Extraction of Antioxidants from Sea Buckthorn (Hippophae rhamnoides) Food By-Products. Food Bioprocess Technol. 2011;4:1020–1028.
  • Taamalli A, Arráez D, Ibañez E, et al. Optimization of Microwave-Assisted Extraction for the Characterization of Olive Leaf Phenolic Compounds by Using HPLC-ESI-TOF-MS/IT-MS2. J Agric Food Chem. 2012;60:791–798.
  • Kumar C, Benal MM, Prasad BD, et al. Microwave assisted extraction of oil from pongamiapinnata seeds. Mater Today Proc. 2018;5:2960–2964.
  • Afolabi HK, Mudalip SKA, Alara OR. Microwave-assisted extraction and characterization of fatty acids from eel fish (Monopterus albus). Beni-Suef University. J Basic Appl Sci. 2018;7:465–470.
  • Cassol L, Rodrigues E, Noreña CPZ. Extracting phenolic compounds from Hibiscus sabdariffa L. calyx using microwave extraction. Industrial Crops & Products. 2019;133:168–177.
  • Liu C, Xue H, Shen L, et al. Improvement of anthocyanins rate of blueberry powder under variable power of microwave extraction. Sep Purif Technol. 2019;226:286–298.
  • Setyaningsih W, Saputro IE, Carrera CA, et al. Optimisation of an ultrasound-assisted extraction method for the simultaneous determination of phenolics in rice grains. Food Chem. 2019;288:221–227.
  • Pimentel-Moral S, Borrás-Linares I, Lozano-Sánchez J, et al. Microwave-assisted extraction for Hibiscus sabdariffa bioactive compounds. J Pharm Biomed Anal. 2018;156: 313–322. Nutrition Reports International 37: 1329–1337.
  • Yemis O, Mazza G. Optimization of furfural and 5-hydroxymethylfurfural production from wheat straw by a microwave-assisted process. Bioresour Technol. 2012;109:215–223.
  • You L, Bin P, Yan L, et al. Ultrasound extraction of polysaccharides from guava leaves and their antioxidant and antiglycation activity. Process Biochem. 2018;73:228–234.
  • Batghare AH, Pati S, Roy K, et al. Mechanistic investigations in ultrasound-assisted extraction of astaxanthin from Phaffia rhodozyma MTCC 7536. Bioresour Technol Rep. 2018;4:166–173.
  • Chandra Kumar R, Bernal MM, Durga Prasad B, et al. Microwave assisted extraction of oil from pongamiapinnata seeds. Mater Today Proc. 2018;5:2960–2964.
  • Lefish K, Giacomazza D, Dahmoune F, et al. Pectin from Opuntia ficusindica: optimization of microwave-assited extraction and preliminary characterization. Food Chem. 2017;221:91–99.
  • Moreira MM, Barroso MF, Boeykens A, et al. Valorization of apple tree wood residues by polyphenols extraction: comparision between conventional and microwave-assisted extraction. Industrial Crops & Products. 2017;104:210–220.
  • Varaee M, Honarvar M, Eikani MH, et al. Supercritical fluid extraction of free amino acids from sugar beet and sugar cane molasses. J Supercrit Fluids. 2019;144:48–55.
  • Priyanka SK. Influence of operating parameters on supercritical fluid extraction of essential oil from turmeric root. J Clean Prod. 2018;188:816–824.
  • Krakowska A, Rafinska K, Walczak J, et al. Enzyme-assisted optimized supercritical fluid extraction to improve Medicago sativa polyphenolics isolation. Industrial Crops & Products. 2018;124:931–940.
  • Ameer K, Chun BS, Kwon JH. Optimization of supercritical fluid extraction of steviol glycosides and total phenolic content from Stevia rebaudiana (Bertoni) leaves using response surface methodology and artificial neural network modeling. Industrial Crops & Products. 2017;109:672–685.
  • Huang Y-F, Chiueh P-T, Kuan W-H, et al. Microwave pyrolysis of lignocellulosic biomass: heating performance and reaction kinetics. Energy. 2016;100:137–144.
  • Dai L, He C, Wang Y, et al. Comparative study on microwave and conventional hydrothermal pretreatment of bamboo sawdust: hydrochar properties and its pyrolysis behaviors. Energy Convers Manag. 2017;146:1–7.
  • Wang H, Ding J, Ren N. Recent advances in microwave-assisted extraction of trace organic pollutants from food and environmental samples. Trends Analyt Chem. 2016;75:197–208.
  • Carbonell-Capella JM, Šic Žlabur J, Rimac Brncic S, et al. Electrotechnologies, microwaves, and ultrasounds combined with binary mixtures of ethanol and water to extract steviol glycosides and antioxidant compounds from Stevia rebaudiana leaves. J Food Process Preserv. 2017;41(5):e13179.
  • Trojanowska A, Tsibranska I, Dzhnonova D, et al. Ultrasound-assisted extraction of biologically active compounds and their successive concentration by using membrane processes. Chem Eng Res Des. 2019;147:378–389.
  • Preece KE, Hooshyar N, Krijgsman A, et al. Intensified soy protein extraction by ultrasound. Chem Eng Process Process Intensif. 2017;113:94–101.
  • Youssouf L, Lallemand L, Giraud P, et al. Ultrasound-assisted extraction and structural characterization by NMR of alginates and carrageenans from seaweeds. Carbohydr Polym. 2017;166:55–63.
  • Luo J, Fang Z, Smith RL. Ultrasound-enhanced conversion of biomass to biofuels. Prog Energy Combust Sci. 2014;41:56–93.
  • Kumar AK, Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources Bioprocess. 2017;4(1):7.
  • Roselló-Soto E, Galanakis CM, Brncic M, et al. Clean recovery of antioxidant compounds from plant foods, by-products and algae assisted by ultrasounds processing. Modeling approaches to optimize processing conditions. Trends Food SciTechnol. 2015;42(2):134–149.
  • Johner JCF, Hatami T, Meireles MAA. Developing a supercritical fluid extraction method assisted by cold pressing for extraction of pequi (Caryocarbrasiliense). J Supercrit Fluids. 2018;137:34–39.
  • Favareto R, Teixeira MB, Soares FAL, et al. Study of the supercritical extraction of Pterodon fruits (Fabaceae). J Supercrit Fluids. 2017;128:159–165.
  • Santos-Zea L, Gutiérrez-Uribe JA, Benedito J. Effect of ultrasound intensification on the supercritical fluid extraction of phytochemical from Agave salmiana bagasse. J Supercrit Fluids. 2019;144:98–107.
  • Conde-Hernández L, Espinosa-Victoria JR, Guerrero-Beltrán JA. Supercritical extraction of essential oils of Piper auritum and Porophyllumriderale. J Supercrit Fluids. 2017;127:97–102.
  • Benito-Román O, Rodríguez-Perrino M, Sanz MT, et al. Supercritical carbon dioxide extraction of quinoa oil: study of the influence of process parameters on the extraction yield and oil quality. J Supercrit Fluids. 2018;139:62–71.
  • Ferrentino G, Morozova K, Mosibo OK, et al. Biorecovery of antioxidants from apple pomace by supercritical fluid extraction. J Clean Prod. 2018;186:253–261.
  • Djas M, Henczka M. Reactive extraction of carboxylic acids using organic solvents and supercritical fluids: a review. Sep Purif Technol. 2018;201:106–119.
  • Guo M, Jin TZ, Yang R. Antimicrobial polylactic acid packaging films against Listeria and Salmonella in culture medium and on ready-to-eat meat. Food Bioprocess Technol. 2014;7:3293–3307.
  • Padil VVT, Senan C, Waclawek S, et al. Bioplastic fibers from gum Arabic for greener food wrapping applications. ACS Sustainable Chem Eng. 2019;7:5900–5911.
  • Varma RS. Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications. ACS Sustainable Chem Eng. 2019;(2019(7):6458–6470.
  • Edlund U, Ryberg YZ, Albertsson AC. Barrier films from renewable forestry waste. Biomacromolecules. 2010;(2010(11):2532–2538.
  • Wang H, Qian J, Fuyuan Ding F. Emerging chitosan-based films for food packaging applications. J Agric Food Chem. 2018;66:395–413.
  • Lopez-Rubio A, Gavara R, Lagaron JM. Bioactive packaging: turning foods into healthier foodsthrough biomaterials. Trends Food SciTechnol. 2006;17:567–575.
  • Majid I, Nayik GA, Dar SM, et al. Novel food packaging technologies: innovations and future prospective. J Saudi Soc Agri Sci. 2018;17:454–462.
  • Guillard V, Gaucel S, Fornaciari C, et al. The next generation of sustainable food packaging to preserve our environment in a circular economy context. Front Nutr. 2018;5:121.
  • Ounkaew A, Kasemsiri P, Kamwilaisak K, et al. Polyvinyl alcohol (PVA)/starch bioactive packaging film enriched with antioxidants from spent coffee ground and citric acid. J Polym Environ. 2018;26:3762–3772.
  • Oliveira RA, De, Komesu A, Eduardo C, et al. Challenges and opportunities in lactic acid bioprocess design—from economic to production aspects. Biochem Eng J. 2018. DOI:https://doi.org/10.1016/j.bej.2018.03.003
  • Petrides D. Bioprocess design and economics. In: Harrison RG, Todd PW, Petrides D, editors. Bioseparations science and engineering. US: Oxford University Press. 2013; p. 1–83. ISBN: 9780199731862
  • Balasundaram B, Harrison S, Bracewell DG. Advances in product release strategies and impact on bioprocess design. Trends Biotechnol. 2009;27(8):477–485.
  • Van Renterghem L, Roelants SLKW, Baccile N, et al. From lab to market: an integrated bioprocess design approach for new-to-nature biosurfactants produced by Starmerella bombicola. Biotechnol Bioeng. 2018;115(5):1195–1206.
  • Schmideder A, Cremer JH, Weuster-Botz D. Parallel steady state studies on a milliliter scale accelerate fed-batch bioprocess design for recombinant protein production with Escherichia coli. Biocatal Bioreactor Design. 2016;115(5):1195–1206.
  • Silva MM, Rodrigues AF, Correia C, et al. PLURIPOTENT STEM CELLS robust expansion of human pluripotent stem cells?: integration of bioprocess design with transcriptomic. Stem Cells Transl Med. 2015;4:731–742.
  • Iqbal M, Tao Y, Xie S, et al. Aqueous two-phase system (ATPS): an overview and advances in its applications. Biol Proced Online. 2016;1–18. DOI:https://doi.org/10.1186/s12575-016-0048-8
  • Tyagi A, Kumar A, Aparna SV, et al. Synthetic biology: applications in the food sector. Crit Rev Food Sci Nutr. 2016;56(11):1777–1789.
  • Heinemann M, Panke S. Synthetic biology-putting engineering into biology. Bioinformatics. 2006;22(22):2790–2799.
  • Tucker J, Zilinskas R. The promise and the peril of synthetic biology. New Atlantis. 2006;12:25–45.
  • Hobom B. Surgery of genes. At the doorstep of synthetic biology. MedizineKlinik. 1980;75:14–21.
  • Jagadeesana B, Gerner-Smidtb P, Allardc MW, et al. The use of next generation sequencing for improving food safety: translation into practice. Food Microbiol. 2019;79:96–115.
  • Zhaon H. Synthetic biology tools and applications. Amsterdam, Boston: Book of Academic Press Elsevier; 2013. p. 3–327. ISBN: 978-0-12-394430-6.
  • Guazzaroni ME, Silva-Rocha R, Ward RJ. Synthetic biology approaches to improve biocatalyst identification in metagenomic library screening. Microb Biotechnol. 2015;8(1):52–64.
  • Heffernan C, Misturelli F. The delivery of veterinary services to the poor: preliminary findings from Kenya report for DFID’s (Department for International Development) Animal Health Programme (AHP). Reading, UK: Livestock Development Group, The University of Reading; 2000.
  • Nakaya N, Homma Y, Goto Y. Cholesterol lowering effect of spirulina. J Dairy Sci. 1988;71:534–538.
  • Jensen MK, Keasling JD. Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Res. 2015;15:1–10.
  • Anderson LA, Islam MM, Prather KLJ. Synthetic biology strategies for improving microbial synthesis of “green” biopolymers. J Biol Chem. 2018;293(14):5053–5061.
  • Chappel J, Watters KE, Takahashi MK, et al. A renaissance in RNA synthetic biology: new mechanisms, applications and tools for the future Author links open overlay panel. Curr Opin Chem Biol. 2015;28:47–56.
  • Li M, Borodina I. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae. FEMS Yeast Res. 2014;15:1–14.
  • Gutiérrez D, Rodríguez-Rubio L, Martínez B, et al. Bacteriophages as weapons against bacterial biofilms in the food industry. Front Microbiol. 2016;7(825):1–15.
  • Jagadeesan B, Gerner-Smidt P, Marc WA, et al. The use of next generation sequencing for improving food safety: translation into practice. Food Microbiol. 2019;79:96–115.
  • Jackson BR, Tarr C, Strain E, et al. Implementation of nationwide real-time whole-genome sequencing to enhance Listeriosis outbreak detection and investigation. Clin Infect Dis. 2016;63:380–386.
  • Gerner-Smidt P, Hyytia-Trees T, Barrett MD, et al. Molecular source tracking and molecular subtyping in food microbiology: fundamentals and frontiers. 4th ed. Washington DC: ASM Press; 2013. p. 1059–1077.
  • Timme RE, Rand H, Shumway MEK, et al. Benchmark datasets for phylogenomic pipeline validation, applications for foodborne pathogen surveillance. PeerJ. 2017;5:e3893.
  • Besser J, Carleton HA, Gerner-Smidt P, et al. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin Microbiol Infect. 2018;24:335–341.
  • Weimer BC, Storey DB, Elkins CA, et al. Defining the food microbiome for authentication, safety, and process management. IBM J Res Dev. 2016;60(5–6):1–13.
  • IBM. (2015). Consortium for sequencing the food supply chain: IBM research and mars tackle global health with food safety partnership, [online] Available: http://www.research.ibm.com/client-programs/foodsafety/.
  • Belda I, Zarraonaindia I, Perisin M, et al. Vineyard soil to wine fermentation: microbiome approximations to explain the “terroir” concept. Front Microbiol. 2017;8:821.
  • Meng F, Zhu X, Nie T, et al. Enhanced expression of pullulanase in bacillus subtilis by new strong promoters mined from transcriptome data, both alone and in combination. Front Microbiol. 2018;9:2635.
  • Reddy CK, Pramila S, Haripriya S. Pasting, textural and thermal properties of resistant starch prepared from potato (Solanum tuberosum) starch using pullulanase enzyme. J Food Sci Technol. 2015;52:1594–1601.
  • Elaziz MA, Hemdan AM, Hassanien A, et al. Analysis of bioactive amino acids from fish hydrolysates with a new bioinformatic intelligent system approach. Sci Rep. 2017;7(1):10860.